首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dynamical analysis of axially moving plate by finite difference method   总被引:1,自引:0,他引:1  
The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.  相似文献   

2.
The bifurcation and chaos of a clamped circular functionally graded plate is investigated. Considered the geometrically nonlinear relations and the temperature-dependent properties of the materials, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic excitation and thermal load are derived. The Duffing nonlinear forced vibration equation is deduced by using Galerkin method and a multiscale method is used to obtain the bifurcation equation. According to singularity theory, the universal unfolding problem of the bifurcation equation is studied and the bifurcation diagrams are plotted under some conditions for unfolding parameters. Numerical simulation of the dynamic bifurcations of the FGM plate is carried out. The influence of the period doubling bifurcation and chaotic motion with the change of an external excitation are discussed.  相似文献   

3.
The plates interacting with inviscid, incompressible, potential gas flow are analyzed. Many modes interaction is considered to describe self-sustained vibrations of plates. The singular integral equation is solved to obtain gas pressures acting on the plate. The Von Karman equations with respect to three displacements are used to describe the plate geometrical non-linear vibrations. The Galerkin method is applied to each partial differential equation to obtain the finite-degree-of-freedom model of the plate vibrations. Self-sustained vibrations, which take place due to the Hopf bifurcation, are investigated. These vibrations undergo the Naimark?CSacker bifurcation and the periodic motions are transformed into the almost periodic ones. If the stream velocity is increased, almost periodic motions are transformed into chaotic ones. As a result of the internal resonance, the saturation of the vibration mode is observed. The non-linear dynamics of low- and high-aspect-ratio plates is analyzed.  相似文献   

4.
According to the large amplitude equation of the circular plate on nonlinear elastic foundation , elastic resisting force has linear item , cubic nonlinear item and resisting bend elastic item. A nonlinear vibration equation is obtained with the method of Galerkin under the condition of fixed boundary. Floquet exponent at equilibrium point is obtained without external excitation. Its stability and condition of possible bifurcation is analysed. Possible chaotic vibration is analysed and studied with the method of Melnikov with external excitation . The critical curves of the chaotic region and phase figure under some foundation parameters are obtained with the method of digital artificial.  相似文献   

5.
针对陶瓷-金属功能梯度圆板,同时考虑几何非线性、材料物性参数随温度变化且材料组分沿厚度方向按幂律分布的情况,应用虚功原理给出了热载荷与横向简谐载荷共同作用下的非线性振动偏微分方程。在固支无滑动的边界条件下,通过引入位移函数,利用伽辽金方法得到了达芬型非线性动力学方程。利用Melnikov方法,给出了热环境中功能梯度圆板可能发生混沌运动的临界条件。通过数值算例,给出了不同体积分数指数和温度的同宿分岔曲线,平面相图和庞加莱映射图,讨论其对临界条件的影响,证实了系统混沌运动的存在。通过分岔图和与其相对应的最大李雅普诺夫指数图,分析了激励频率和激励幅值对倍周期分岔的影响及变化规律,发现系统可出现周期、倍周期和混沌等复杂动力学响应。  相似文献   

6.
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s third-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial difirential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.  相似文献   

7.
The nonlinear vibrations of a composite laminated cantilever rectangular plate subjected to the in-plane and transversal excitations are investigated in this paper. Based on the Reddy??s third-order plate theory and the von Karman type equations for the geometric nonlinearity, the nonlinear partial differential governing equations of motion for the composite laminated cantilever rectangular plate are established by using the Hamilton??s principle. The Galerkin approach is used to transform the nonlinear partial differential governing equations of motion into a two degree-of-freedom nonlinear system under combined parametric and forcing excitations. The case of foundational parametric resonance and 1:1 internal resonance is taken into account. The method of multiple scales is utilized to obtain the four-dimensional averaged equation. The numerical method is used to find the periodic and chaotic motions of the composite laminated cantilever rectangular plate. It is found that the chaotic responses are sensitive to the changing of the forcing excitations and the damping coefficient. The influence of the forcing excitation and the damping coefficient on the bifurcations and chaotic behaviors of the composite laminated cantilever rectangular plate is investigated numerically. The frequency-response curves of the first-order and the second-order modes show that there exists the soft-spring type characteristic for the first-order and the second-order modes.  相似文献   

8.
On the dynamics of tapping mode atomic force microscope probes   总被引:1,自引:0,他引:1  
A?mathematical model is developed to investigate the grazing dynamics of tapping mode atomic force microscopes (AFM) subjected to a base harmonic excitation. A?multimode Galerkin approximation is utilized to discretize the nonlinear partial differential equation of motion governing the cantilever response and associated boundary conditions and obtain a set of nonlinearly coupled ordinary differential equations governing the time evolution of the system dynamics. A?comprehensive numerical analysis is performed for a wide range of the excitation amplitude and frequency. The tip oscillations are examined using nonlinear dynamic tools through several examples. The non-smoothness in the tip/sample interaction model is treated rigorously. A?higher-mode Galerkin analysis indicates that period doubling bifurcations and chaotic vibrations are possible in tapping mode microscopy for certain operating parameters. It is also found that a single-mode Galerkin approximation, which accurately predicts the tip nonlinear responses far from the sample, is not adequate for predicting all of the nonlinear phenomena exhibited by an AFM, such as grazing bifurcations, and leads to both quantitative and qualitative errors.  相似文献   

9.
Minghui Yao  Wei Zhang 《Meccanica》2014,49(2):365-392
This paper investigates the multi-pulse global bifurcations and chaotic dynamics of the high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:2 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov type multi-pulse homoclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multi-pulse chaotic dynamics of the laminated composite piezoelectric rectangular plate are analytically obtained. Numerical simulations also illustrate that the Shilnikov type multi-pulse chaotic motions can also occur in the laminated composite piezoelectric rectangular plate. Overall, both theoretical and numerical studies demonstrate that the chaos in the Smale horseshoe sense exists for the laminated composite piezoelectric rectangular plate.  相似文献   

10.
Numerical simulations of nonlinear responses of a flat plate subject to decoupled fluid loading are carried out. Under clamped boundary conditions and subject to forced vibration at its natural frequency corresponding to the (5,1) mode, the various response modes of the plate are determined. It is found that increasing the excitation amplitude, the response changed from periodic to chaotic. In addition, the fluid-wall shear stresses are found to change the response from linear to nonlinear and vice versa depending on their magnitudes. When a static pressure load is combined with fluid-wall shear stresses and low excitation amplitude, the resulting response was chaotic.  相似文献   

11.
This paper presents a new approach to characterize the conditions that can possibly lead to chaotic motion for a simply supported large deflection rectangular plate by utilizing the criteria of the fractal dimension and the maximum Lyapunov exponent. The governing partial differential equation of the simply supported rectangular plate is first derived and simplified to a set of two ordinary differential equations by the Galerkin method. Several different features including Fourier spectra, state-space plot, Poinca?e map and bifurcation diagram are then numerically computed by using a double-mode approach. These features are used to characterize the dynamic behavior of the plate subjected to various excitation conditions. Numerical examples are presented to verify the validity of the conditions that lead to chaotic motion and the effectiveness of the proposed modeling approach. The numerical results indicate that large deflection motion of a rectangular plate possesses many bifurcation points, two different chaotic motions and some jump phenomena under various lateral loading. The results of numerical simulation indicate that the computed bifurcation points can lead to either a transcritical bifurcation or a pitchfork bifurcation for the motion of a large deflection rectangular plate. Meanwhile, the points of pitchfork bifurcation can gradually lead to chaotic motion in some specific loading conditions. The modeling result thus obtained by using the method proposed in this paper can be employed to predict the instability induced by the dynamics of a large deflection plate.  相似文献   

12.
Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method.The rectangular thin plate is subject to transversal and in-plane excitation.A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach.A one-toone internal resonance is considered.An averaged equation is obtained with a multi-scale method.After transforming the averaged equation into a standard form,the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics,which can be used to explain the mechanism of modal interactions of thin plates.A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits.Furthermore,restrictions on the damping,excitation,and detuning parameters are obtained,under which the multi-pulse chaotic dynamics is expected.The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.  相似文献   

13.
针对大跨度斜拉桥拉索与桥塔、桥面的协同振动问题,考虑拉索垂度、阻尼、倾角以及重力弦向分力的影响,引入拉索高精度抛物线形,建立了桥塔-索-桥面连续非线性精细化振动模型,推导了桥塔和桥面共同激励作用下斜拉索耦合振动方程,对比分析了2种激振模式下斜拉索的参数振动特性,并编制程序研究了桥面与拉索的频率比、桥面激励幅值、索力及阻尼对结构耦合振动特性的影响规律。结果表明:桥面与拉索频率比对系统振动的影响较大,频率比为1:2和2:1时拉索均产生强烈振动,但2:1激振模式下拉索振幅更大,达到共振时间较长;随着桥面激励幅值的增大,2:1亚谐波共振模式下的拉索振幅增长速率更快;拉索振幅随索力的增大呈非线性减小趋势;斜拉索阻尼超过2%时,继续提高自身阻尼不能有效减小其振动幅值,需要通过设置附加阻尼才能更好地抑制其振动。  相似文献   

14.
This paper deals with vibrations of an infinite plate in contact with an acoustic medium where the plate is subjected to a point excitation by an electric motor of limited power-supply. The whole system is divided into two “exciter - foundation” and “foundation-plate-medium”. In the system “motor-foundation” three classes of steady state regimes are determined: stationary, periodic and chaotic. The vibrations of the plate and the pressure in the acoustic fluid are described for each of these regimes of excitation. For the first class they are periodic functions of time, for the second they are modulated periodic functions, in general with an infinite number of carrying frequencies, the difference between which is constant. For the last class they correspond to chaotic functions. In another mathematical model where the exciter stands directly on an infinite plate (without foundation) it was shown that chaos might occur in the system due to the feedback influence of waves in the infinite hydro-elastic subsystem in the regime of motor shaft rotation. In this case the process of rotation can be approximately described as a solution of the fourth order nonlinear differential equation and may have the same three classes of steady state regimes as the first model. That is the electric motor may generate periodic acoustic waves, modulated waves with an infinite number of frequencies or chaotic acoustic waves in a fluid.  相似文献   

15.
A general solution of differential equation for lateral displacement lunction of rectangular elastic thin plates in free vibration is established in this paper. It can be used to solve the vibration problem of rectangular plate with arbitrary boundaries. As an example, the frequency and its vibration mode of a rectangular plate with four edges free have been solved.  相似文献   

16.
Multi-frequency vibrations of a system of two isotropic circular plates interconnected by a visco-elastic layer that has non-linear characteristics are considered. The considered physical system should be of interest to many researches from mechanical and civil engineering. The first asymptotic approximation of the solutions describing stationary and no stationary behavior, in the regions around the two coupled resonances, is the principal result of the authors. A series of the amplitude-frequency and phase-frequency curves of the two frequency like vibration regimes are presented. That curves present the evolution of the first asymptotic approximation of solutions for different non-linear harmonics obtained by changing external excitation frequencies through discrete as well as continuous values. System of the partial differential equations of the transversal oscillations of the sandwich double circular plate system with visco-non-linear elastic layer, excited by external, distributed, along plate surfaces, excitation are derived and approximately solved for various initial conditions and external excitation properties. System of differential equations of the first order with respect to the amplitudes and the corresponding number of the phases in the first asymptotic averaged approximation are derived for different corresponding multi-frequency non-linear vibration regimes. These equations are analytically and numerically considered in the light of the stationary and no stationary resonant regimes, as well as the multi-non-linear free and forced mode mutual interactions, number of the resonant jumps.  相似文献   

17.
This paper presents numerical results on chaotic vibrations of a shallow cylindrical shell-panel under harmonic lateral excitation. The shell, with a rectangular boundary, is simply supported for deflection and the shell is constrained elastically in an in-plane direction. Using the Donnell--Mushtari--Vlasov equation, modified with an inertia force, the basic equation is reduced to a nonlinear differential equation of a multiple-degree-of-freedom system by the Galerkin procedure. To estimate regions of the chaos, first, nonlinear responses of steady state vibration are calculated by the harmonic balance method. Next, time progresses of the chaotic response are obtained numerically by the Runge--Kutta--Gill method. The chaos accompanied with a dynamic snap-through of the shell is identified both by the Lyapunov exponent and the Poincaré projection onto the phase space. The Lyapunov dimension is carefully examined by increasing the assumed modes of vibration. The effects of the in-plane elastic constraint on the chaos of the shell are discussed.  相似文献   

18.
Based on the von Karman plate theory of large deflection, we have derived a non-linear partial differential equation for the vibration of a thin orthotropic plate under the combined action of a transverse magnetic field and a transverse harmonic mechanical load. The influence of the magnetic field is due to the magnetic Lorentz force induced by the eddy current. By employing the Bubnov-Galerkin method, the non-linear partial differential equation is transformed into a third-order non-linear ordinary differential equation. The amplitude-frequency equations are further derived by means of the multiple-scale method. As numerical examples for an orthotropic plate made of silver, the influence of the magnetic field, orthotropic material property, plate thickness, and the mechanical load on the principal resonance behavior is investigated. The higher-order effect and stability of the solution are also discussed.  相似文献   

19.
Fan  Jiashen  He  Fusheng  Liu  Zhengrong 《Nonlinear dynamics》1997,12(1):57-68
The purpose of this paper is to investigate the dynamic behaviour of saddle form cable-suspended roofs under vertical excitation action. The governing equations of this problem are system of nonlinear partial differential and integral equations. We first establish a spectral equation, and then consider a model with one coefficient, i.e., a perturbed Duffing equation. The analytical solution is derived for the Duffing equation. Successive approximation solutions can be obtained in likely way for each time to only one new unknown function of time. Numerical results are given for our analytical solution. By using the Melnikov method, it is shown that the spectral system has chaotic solutions and subharmonic solutions under determined parametric conditions.  相似文献   

20.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号