首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the separation voltage on end column electrochemical detection (EC) in capillary electrophoresis (CE) has been investigated using an electrochemical detector chip based on an array of microband electrodes. It is shown, both theoretically and experimentally, that the effect of the CE electric field on the detection can be practically eliminated, without using a decoupler, by positioning the reference electrode sufficiently close to the working electrode. In the present study, this was demonstrated by using an experimental setup in which neighboring microband electrodes on a chip, positioned 30 microns from the end of the CE capillary, were used as working and reference electrodes, respectively. The short distance (i.e., 10 microns) between the working and reference electrode ensured that both of the electrodes were very similarly affected by the presence of the CE electric field. With this experimental setup, no significant influence of the CE voltage on the peak potentials for gold oxide reduction could be seen for CE voltages up to +30 kV. The detector noise level was also found to be reduced.  相似文献   

2.
A new potentiostatless detection scheme for amperometric detection in capillary electrophoresis is presented based on the use of microband array electrodes positioned in the capillary electrophoresis electric field. In the present study, the spatial potential difference in the CE separation high-voltage field was measured using two gold microband electrodes positioned in the proximity of the capillary outlet. The induced potential difference between the two electrodes was recorded as a function of the applied separation high voltage and the dependence of the electrochemically generated current on the high-voltage field, and the concentration of a redox couple (Fe(CN)6(4-)/Fe(CN)6(3-)) was investigated. The results show that plots of the generated current versus the CE separation voltage have the same shape as cyclic voltammograms obtained with the same electrodes in a traditional potentiostatic setup and that the current is proportional to the concentration of the redox couple. As a decoupling device is not needed, the described potentiostatless approach significantly simplifies the instrumental setup for amperometric detection. This approach consequently holds great promise for application in inexpensive portable chip-based CE devices.  相似文献   

3.
Highly boron-doped diamond microelectrodes were employed in an end-column electrochemical detector for capillary electrophoresis (CE). The diamond microline electrodes were fabricated from conducting diamond thin films (exposed surface area, 300 x 50 microm), and their analytical performance as CE detectors was evaluated in a laboratory-made CE installation. The CE-ED system exhibited high separation efficiency for the detection of several catecholamines, including dopamine (DA), norepinephrine (NE), and epinephrine (E), with excellent analytical performance, for example, 155,000 theoretical plates for DA. The diamond-based electrochemical detection system also displayed low detection limits (approximately 20 nM for E at S/N = 3) and a highly reproducible current response with 10 repetitive injections of mixed analytes containing DA, NE, and E (each 50 microM), with relative standard deviations (RSD) of approximately 5%. The performance of the diamond detector in CE was also evaluated in the detection of chlorinated phenols (CP). When compared to the carbon fiber microelectrode, the diamond electrode exhibited lower detection limits in an end-column CE detection resulting from very low noise levels and highly reproducible analyses without electrode polishing due to analyte fouling, which makes it possible to perform easier and more stable CE analysis.  相似文献   

4.
Matysik FM 《Analytical chemistry》2000,72(11):2581-2586
An end-column electrochemical detector arrangement for capillary electrophoresis (CE) based on a 75-microm-i.d. capillary and a 25-microm microdisk electrode is characterized. The investigations were carried out using a nonaqueous (acetonitrile-based) buffer and ferrocene model compounds which offer high reliability for voltammetric measurements. The positioning of the microdisk electrode relative to the capillary outlet is the most important parameter for optimization of detection performance as it determines the characteristics of mass transport toward the electrode and the effect of ohmic potential drop resulting from the electrophoretic current on the actual detection potential. On the basis of spatially resolved studies, it was concluded that for the detection system used the microdisk electrode should be placed in a central position relative to the capillary outlet at a distance within the range of 75-100 microm. The presence of a high-voltage electric field had no negative effect on baseline noise, which was demonstrated by comparison of capillary flow injection based on gravity flow and CE experiments. Even a faster stabilization of the baseline was observed by increasing the separation voltage.  相似文献   

5.
Cyclic chronopotentiometry provides a very simple detection method, which may be particularly useful in capillary electrophoresis (CE) and microseparation systems. It has been shown that for disk microelectrodes it is possible to define safe reduction and oxidation currents that would never lead to the formation of H2 or O2 gas bubbles, even if they are applied for an indefinitely long time period. During end-column CE detection, currents passing through the working microelectrode can be completely controlled by the external electronic circuit and they are not affected by the separation current. Consequently, problems created by the offset potential in CE can be completely eliminated. The detection can be accomplished through a variety of different mechanisms; however, generation of the electrode response as a result of analyte adsorption seems to be most common. The method is applicable to many analytes, which do not have to be electroactive. The analytical signal is obtained by monitoring the change in the average electrode potential (calculated for either a cathodic or an anodic half-cycle) caused by an analyte interacting with the electrode. The analytical signal is proportional to the analyte concentration, within a concentration range extending over approximately 2 orders of magnitude.  相似文献   

6.
Microchip capillary electrophoresis with electrochemical detection   总被引:2,自引:0,他引:2  
Zeng Y  Chen H  Pang DW  Wang ZL  Cheng JK 《Analytical chemistry》2002,74(10):2441-2445
A novel microchip capillary electrophoresis system with electrochemical detection, using the replaceable microelectrode, is first reported. This kind of electrode can be fabricated in general laboratories and can be replaced quickly with electrodes of different materials according to the requirements of experiments. The end-column electrochemical detection on microchip CE was achieved by fixing the working electrode (such as carbon fiber, Pt, or Au, etc.) through a guide tube on the end of the separation channel. The experiment results indicate that the alignment of the electrode with the channel outlet can be carried out accurately and reproducibly, and therefore, the detection device has low noise and good reproducibility. The detection limit of dopamine is 2.4 x 10(-7) M, which is the lowest result reported so far. The separation and detection of dopamine, 5-hydroxytryptamine and epinephrine using carbon fiber and Pt microdisk electrodes within 50 s was successfully performed.  相似文献   

7.
Hilmi A  Luong JH 《Analytical chemistry》2000,72(19):4677-4682
Microfabricated capillary electrophoresis (CE) chips with integrated electrochemical detection have been developed on glass substrates. An electroless deposition procedure was used to deposit a gold film directly onto the capillary outlet to provide high-sensitivity electrochemical detection for catechol and several nitroaromatic explosives. Scanning electron microscopy revealed that the electroless gold film contains nanoscopic gold aggregates (100-150 nm) with an average thickness of 79 nm. The electroless deposition procedure can be easily and routinely performed in any wet-chemistry laboratory, and electroless gold can be deposited onto complex and internal surfaces. Intimate coupling of electrochemical detection and CE chips obviates the need for a coupling mechanism or tedious alignment procedures. With nitroaromatic compounds as a working model, microchip capillary electrophoresis equipped with electroless gold has proven to provide high sensitivity and fast response times for sensor applications. The CE microchip system was capable of separation and determination of explosive compounds including TNT in less than 130 s with detection limits ranging from 24 to 36 microg/L, i.e., 4-fold enhancements in detection efficiency in comparison to thick-film technology.  相似文献   

8.
Chen C  Hahn JH 《Analytical chemistry》2007,79(18):7182-7186
A novel in-channel amperometric detection method for microchip capillary electrophoresis (CE) has been developed to avoid the interference from applied potential used in the CE separation. Instead of a single separation channel as in conventional CE microchips, we use a dual-channel configuration consisting of two different parallel separation and reference channels. A working electrode (WE) and a reference electrode (RE) are placed equally at a distance 200 microm from its outlet on each channel. Running buffer flows through the reference channel. Our dual-channel CE microchips consist of a poly(dimethylsiloxane) (PDMS) upper plate and a glass lower plate to form a PDMS/glass hybrid chip. Amperometric signals are measured without any potential shift and interference from the applied CE potential, and CE separation maintains its high resolution because this in-channel configuration does not allow additional band broadening that is notorious in end-channel and off-channel configurations. The high performance of this new in-channel electrochemical detection methodology for CE has been demonstrated by analyzing a mixture of electrochemically active biomolecules: dopamine (DA), norepinephrine, and catechol. We have achieved a 0.1 pA detectability from the analysis of DA, which corresponds to a 1.8 nM concentration.  相似文献   

9.
Miniaturized wall-jet type flow cells with an active volume of 0.042-15 nL were fabricated for use as highly sensitive electrochemical detectors for capillary electrophoresis/electrochemical detection and small on-line enzyme sensors. The cells consisted of three glass plates and a fused-silica capillary. Two of the plates had microfabricated flow channels and guide trenches for the capillary and working, reference, and counter electrodes. The other plate had a film electrode. When an interdigitated microarray electrode (total area, 66 microm x 64 microm; bandwidth and gap, 2 microm) was installed in the flow cell, the redox cycling enhanced the current at flow rates of less than 100 nL/min even though there were only eight pairs of microbands. A sharp dopamine peak enhanced by the redox cycling was observed when the cell was used for capillary electrophoresis. A square film electrode modified with glutamate oxidase and Os-poly(vinylpyridine) containing HRP was also installed in the flow cell and used to measure neurotransmitter release from cultured nerve cells. When the flow rate was relatively high, the response time of the modified electrode was comparable to that of a cylindrical carbon fiber electrode (33 microm o.d.) modified with the same enzyme and mediator. We observed a transient cathodic current response assigned to the glutamate release with the electrode in the flow cell in a suction mode measurement when we stimulated cultured nerve cells electrically with a dual microelectrode.  相似文献   

10.
Wang J  Tian B  Sahlin E 《Analytical chemistry》1999,71(23):5436-5440
A capillary electrophoresis (CE) microsystem, based on the combination of microphotolithographically fabricated separation chips and thick-film electrochemical detector strips, is described. The microsystem consists of a planar screen-printed carbon line electrode mounted perpendicular to the flow direction. Such coupling obviates the need for permanent attachment of the detector, to allow easy and fast replacement of the working electrode. Variables influencing the separation efficiency and amperometric response, including the channel-electrode spacing, separation voltage, or detection potential, are assessed and optimized. The versatility, simplicity, and low-cost advantages of the new design are coupled to an attractive performance, with submicromolar detection limits, and good precision. Applicability for assays of mixtures of nitroaromatic explosives or catecholamines is demonstrated. Such use of screen-printed detectors should also benefit conventional CE systems, particularly in applications requiring a frequent replacement of the working electrode.  相似文献   

11.
Hua L  Tan SN 《Analytical chemistry》2000,72(20):4821-4825
An integrated on-capillary tubular electrochemical detector for capillary electrophoresis systems has been fabricated based on sol-gel technique. It consists of a sol-gel carbon composite tubular electrode attached permanently onto the outlet of the separation capillary. The device greatly eases the setting up of capillary electrophoresis with electrochemical detection (CEEC) as it makes possible electrode/capillary alignment without the aid of a micromanipulator since this integrated unit can be simply immersed in the CE separation buffer in an ordinary three-electrode stationary cell. To improve analytical performance of the integrated unit, the external wall of the exit capillary was etched with HF after the polyimide coating of the capillary had been removed. Influences of the working electrode length and the wall thickness at the outlet of capillary on the separation efficiency and amperometric sensitivity were assessed and optimized. The practical applicability of this configuration is demonstrated with the detection of both catecholamines and carbohydrates. The advantages, namely, versatility, convenience, ease of operation, and low-cost, of the new design combined with an excellent performance lead to high stability and low detection limits.  相似文献   

12.
Miniaturized, battery-powered, high-voltage power supply, electrochemical (EC) detection, and interface circuits designed for microchip capillary electrophoresis (CE) are described. The dual source CE power supply provides +/- 1 kVDC at 380 microA and can operate continuously for 15 h without recharging. The amperometric EC detection circuit provides electrode potentials of +/-2 VDC and gains of 1, 10, and 100 nA/V. The CE power supply power is connected to the microchip through an interface circuit consisting of two miniature relays, diodes, and resistors. The microchip has equal length buffer and separation channels. This geometry allows the microchip to be controlled from only two reservoirs using fixed dc sources while providing a consistent and stable sample injection volume. The interface circuit also maintains the detection reservoir at ground potential and allows channel currents to be measured likewise. Data are recorded, and the circuits are controlled by a National Instruments signal interface card and software installed in a notebook computer. The combined size (4 in. x 6 in. x 1 in.) and weight (0.35 kg) of the circuits make them ideal for lab-on-a-chip applications. The circuits were tested electrically, by performing separations of dopamine and catechol EC and by laser-induced fluorescence visualization.  相似文献   

13.
In field-amplified injection in capillary electrophoresis (CE), the capillary is filled with two buffering zones of different ionic strength; this induces an amplified electrical field in the low ionic strength zone and a lower field in the high ionic strength zone, making sample stacking feasible. The electroosmotic flow (eof) usually observed in CE, however, displaces the low field zone and induces an extra band broadening preventing any CE separation in the field-amplified zone. These limitations have originated the restricted use of field amplification in CE only for stacking purposes. For the first time, in this work it is theoretically shown and experimentally corroborated that CE separation speed and efficiency can simultaneously be increased if the whole separation is performed in the field-amplified zone, using what we have called field amplified separation in capillary electrophoresis (FAsCE). The possibilities of this new CE mode are investigated using a new and simple coating able to provide near-zero eof at the selected separation pH. Using FAsCE, improvements of 20% for separation speed and 40% for efficiency are achieved. Moreover, a modified FAsCE approach is investigated filling the capillary with the high ionic strength buffer up to the interior of the detection window. Under these conditions, an additional 3-fold increase in sensitivity is also observed. The most interesting results were obtained combining the short-end injection mode and this modified FAsCE approach. Under these conditions, a part of a 3-fold improvement in efficiency and sensitivity, the total analysis time was drastically reduced to 40 s, giving rise to a time reduction of more than 7-fold compared to normal CE. This speed enhancement brings about one of the fastest CE separations achieved using capillaries, demonstrating the great possibilities of FAsCE as a new, sensitive, efficient, and fast CE separation mode.  相似文献   

14.
An external electric field driven in-channel detection technique for on-chip electrochemical detection in micro fabricated devices is described based on a microfluidic system containing an array of 20 microband electrodes. It is shown that an external electric field induces a potential difference between two gold microband electrodes in a poly(dimethylsiloxane) (PDMS) microchannel, and that this enables the electrochemical detection of electroactive species such as ascorbic acid and Fe(CN) 6 (4-). The results, which are supported by simulations of the behavior of the microband electrodes in the microfluidic system, show that the induced potential difference between the electrodes can be controlled by altering the external electric field or by using different microbands in the microband array. As the obtained currents depend on the concentrations of electroactive species in the flowing solution and the detection can be carried out anywhere within the channel without interference of the external electric field, the present approach significantly facilitates electrochemical detection in capillary electrophoresis. This approach consequently holds great promise for application in inexpensive portable chip-based capillary electrophoresis (CE) devices.  相似文献   

15.
A new decoupler for on-column electrochemical detection in capillary electrophoresis is presented. The decoupler is constructed by etching a series of holes through the side of the separation capillary with a CO2 laser and then coating the holes with cellulose acetate. The decoupler shows isolation of the detection circuit for separation currents up to 30 microA. Detection limits below 1 nM were achieved for four model compounds, including anions, neutrals, and cations, using the laser-etched decoupler. This decoupler design combines excellent mechanical stability, effective shunting of high separation currents, and ease of manufacture.  相似文献   

16.
Microdialysis sampling is a technique that has been used for in vivo and in vitro monitoring of compounds of pharmaceutical, biomedical, and environmental interest. The coupling of a commercially available microdialysis probe to a microchip-based capillary electrophoresis (CE) system is described. A continuously flowing dialysate stream from a microdialysis probe was introduced into the microchip, and discrete injections were achieved using a valveless gating approach. The effect of the applied voltage and microdialysis flow rate on device performance was investigated. It was found that the peak area varied linearly with the applied voltage. Higher voltages led to lower peak response but faster separations. Perfusion flow rates of 0.8 and 1.0 microL/min were found to provide optimal performance. The on-line microdialysis/microchip CE system was used to monitor the hydrolysis of fluorescein mono-beta-d-galactopyranoside (FMG) by beta-d-galactosidase. A decrease of the FMG substrate with an increase in the fluorescein product was observed. The temporal resolution of the device, which is dependent on the CE separation time, was 30 s. To the best of our knowledge, this is the first reported coupling of a microdialysis sampling probe to a microchip capillary electrophoresis device.  相似文献   

17.
J Qian  Y Wu  H Yang  A C Michael 《Analytical chemistry》1999,71(20):4486-4492
An approach to capillary electrophoresis with electrochemical detection (CE-EC) suitable for determination of dopamine in 1-min brain microdialysate samples is described. The CE-EC system includes an electrochemical detection cell that permits easy, precise, and permanent alignment of a carbon fiber microelectrode with a separation capillary (30-micron i.d., 75-cm length). Amperometric detection was performed at a constant applied potential of 600 mV with respect to a Ag/AgCl reference electrode. Decoupling of the electrophoretic current from the amperometric detector was accomplished with an integrated end-column decoupler prepared by etching the capillary outlet with HF. The decoupler produces baseline noise of 50 fA, or less, in the presence of 10-20-muA current in the separation capillary. The low baseline noise affords low mass (attomoles) and low concentration (nanomolar) detection limits for dopamine and 4-methylcatechol. A peak attributable to dopamine was identified in electropherograms of brain microdialysate samples obtained from anesthetized rats. Identification of the dopamine peak was confirmed by pharmacological methods. Dopamine was readily detected in 1-min brain microdialysate samples. The dopamine concentration in 1-min brain microdialysis samples was significantly altered by drug treatments and by brief electrical stimulation of dopaminergic axons.  相似文献   

18.
The fabrication and evaluation of a palladium decoupler and working electrode for microchip capillary electrophoresis (CE) with electrochemical detection is described. The use of the Pd decoupler allows the working electrode to be placed directly in the separation channel and eliminates the band-broadening characteristic of the end-channel configuration. The method used for fabrication of the decoupler and working electrode was based on thin-layer deposition of titanium followed by palladium onto a glass substrate. When employed as the cathode in CE, palladium absorbs the hydrogen gas that is generated by the hydrolysis of water. The effect of the decoupler size on the ability to remove hydrogen was evaluated with regard to reproducibility and longevity. Using boric acid and TES buffer systems, 500 microm was determined to be the optimum decoupler size, with effective voltage isolation lasting for approximately 6 h at a constant field strength of 600 V/cm. The effect of distance between the decoupler and working electrode on noise and resolution for the separation of dopamine and epinephrine was also investigated. It was found that 250 microm was the optimum spacing between the decoupler and working electrode. At this spacing, laser-induced fluorescence detection at various points around the decoupler established that the band broadening due to pressure-induced flow that occurs after the decoupler did not significantly affect the separation efficiency of fluorescein. Limits of detection, sensitivity, and linearity for dopamine (500 nM, 3.5 pA/microM, r(2) = 0.9996) and epinephrine (2.1 microM, 2.6 pA/microM, r(2) = 0.9996) were obtained using the palladium decoupler in combination with a Pd working electrode.  相似文献   

19.
A method with the ability to increase greatly both the resolution and efficiency of a given capillary electrophoretic system is described. This method differs from traditional capillary electrophoresis (CE) in that a counterflow is induced in the direction opposite to the electrokinetic migration of the analyte. This has the effect of extending not only the time the analytes migrate in the electric field but also the effective length and the effective applied voltage of the system. Previous work in our group with flow counterbalanced capillary electrophoresis has utilized an open tube of small inner diameter to reduce peak broadening caused by hydrodynamic flow. Narrow-diameter capillaries (5-10 microm) restricted analysis to fluorescent analytes and laser-induced fluorescence detection. The method described here uses a capillary of much larger inner diameter (75 microm) that has been packed with nonporous silica particles. The packing material reduces the amount of band broadening caused by pressure-induced flow relative to that experienced in an open tube. A larger diameter capillary allows the detection of analytes by UV absorption, not only eliminating the need to tag analytes with fluorescent tags but also allowing for the detection of a much broader range of analytes. The system was evaluated by studying the separations of several enantiomers using only beta-cyclodextrin as the chiral selector. The system was also used to resolve the two naturally occurring isotopes of bromine and to resolve phenylalanine from phenylalanine-d8. Relative to traditional CE, large improvements in resolution and separation efficiency have been achieved with this method.  相似文献   

20.
Fang X  Gong F  Fang Y 《Analytical chemistry》1998,70(19):4030-4035
The enantiomers of two amine derivatives were directly separated by capillary electrophoresis (CE), employing β-cyclodxtrin (β-CD) as a chiral additive in strongly alkaline solutions. The analytes were detected by electrochemistry, using a copper disk electrode at +675 mV vs Ag/AgCl reference electrode. Both the free enantiomers and the enantiomer-cyclodxtrin inclusion complexes could be detected using this approach, although the complexed forms gave lower oxidation currents than the free forms. Factors affecting the chiral CE separation of the analytes, such as working potential, concentration of running buffer and β-CD, and applied voltage, were extensively investigated. Under the optimum conditions, baseline separation of the enantiomers could be accomplished in less than 18 min. In addition, a successful application of the method to the enantiomeric purity determination confirmed its validity and practicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号