首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although large amounts of olive oil are produced in Turkey, not much information on its chemical composition is available in the literature to date. The aim of this study was to evaluate the chemical composition of commercial olive oils produced from the Ayvalik olive cultivar in Canakkale, Turkey. Five different samples corresponding to the olive oil categories of extra virgin (conventional, extra virgin olive oil (EVOO), and organic extra virgin olive oil (OGOO) production), virgin olive oil (OO-1), ordinary virgin olive oil (OO-2) and refined olive oil (RFOO) were evaluated. Olive oils were collected from two consecutive production years. According to the free fatty acids, the absorbance values (K232 and K270), and peroxide values of all the samples conformed to the European standards for olive oil. The level of oleic acid was in the range of 68–73%; while the linoleic acid content was significantly lower in the refined olive oils. The tocopherol and polyphenol content was in the lower range of some European olive oils. However, pinoresinol was a major phenolic compound (5–77 mg/kg depending on the oil category). Its content was markedly higher than in many other oils, which would be a useful finding for olive oil authentication purposes.  相似文献   

2.
A method involving reversed-phase high-performance liquid chromatography with amperometric detection has been developed for the analysis of tocopherols and tocotrienols in vegetable oils. The sample preparation avoids saponification. Recoveries of α-tocotrienol and γ-tocotrienol in extra virgin olive oil were 97.0 and 102.0%, respectively. No tocotrienols were detected in olive, hazelnut, sunflower, and soybean oils, whether virgin or refined. However, relatively high levels of tocotrienols were found in palm and grapeseed oils. This method could detect small quantities (1–2%) of palm and grapeseed oils in olive oil or in any tocotrienol-free vegetable oil and might, therefore, help assess authenticity of vegetable oils.  相似文献   

3.
Adulteration of extra virgin olive oil (EVOO) by addition of other vegetable oils or lower-grade olive oils is a common problem of the oil market worldwide. Therefore, we developed a fast protocol for detection of EVOO adulteration by mass spectrometry fingerprinting of triacylglycerol (TAG) profiles based on MALDI-TOF/MS. For that purpose, EVOO TAG profiles were compared with those of edible sunflower oil and olive oil composed of refined olive oil and virgin olive oils. Adulteration of EVOO was simulated by addition of sunflower and mixture of refined olive oil and virgin olive oils at 1, 10 and 20% w/w. Results of mass spectrometry TAG profiling were compared with routinely assessed K values for identification of adulteration. MALDI-TOF/MS technology coupled with statistical analysis was proven as useful for detection of adulteration in EVOO at a rate down to 1%. In contrast, standard spectrophotometric methods failed to identify minor adulterations. In addition, the ability of MALDI-TOF/MS in detection of adulteration was tested on EVOO samples from different geographical regions. Results demonstrated that MALDI-TOF/MS technology coupled with statistical analysis is able to distinguish adulterated oils from other EVOO.  相似文献   

4.
Experiments were carried out to study the possibility of improving the stability of extra virgin olive oil by using nitrogen as a conditioner gas during storage. With this aim, virgin olive oil samples, obtained from Leccino and Coratina cultivars, were stored in the dark, in closed bottles conditioned with air or nitrogen at 12–20 and 40°C. Results indicated that the FFA percentage increased over 1% only when oils were stored at 40°C. The PV and the K 232 value (light absorbance at 232 nm) of oils increased over the limit value allowed by European Union law when the bottles were only partly filled and air was the conditioner gas. The use of nitrogen as conditioner gas helped to avoid this risk during 24 mon of storage at 12–20°C. The total phenolic content of both cultivars oils decreased during storage because their oxidation protected the oils from autoxidation. The content of total volatile compounds in oils decreased continuously during storage at 12–20°C, whereas it increased over 10 (Coratina cv.) and 15 (Leccino cv.) mon and then diminished when the storage temperature was 40°C. The same behavior, i.e., increase then decrease, was ascertained for trans-2-hexenal. The hexanal content of oils increased continuously during storage because this compound is formed by the decomposition of the 13-hydroperoxide of linoleic acid.  相似文献   

5.
Twenty-eight virgin olive oils—from different regions of Spain and prepared from olive drupes of different varieties—and six refined olive oils were analyzed to determine the presence of proteins in these oils. All oils studied showed the presence of proteins in the range of 7–51 μ/100 g of oil. There were no significant differences in protein content in oils from different varieties or between virgin or refined oils. In addition, all oils exhibited analogous amino acid patterns, suggesting a similarity among protein fractions obtained from different oils. A polypeptide with an apparent M.W. of 4600 Da was common to the isolated protein fractions. These results suggest that this polypeptide is a previously unknown minor component in olive oils. No clear influence of this component on oil stability was observed when oil stabilities were estimated as a function of phenol, tocopherol, phosphorus, and protein contents of the oils.  相似文献   

6.
Compositional analysis of the sterol fraction of olive oil can be used to assess the degree of purity of the oil and the absence of admixture with other plant oils. This determination also permits characterization of the type of olive oil in question: virgin, refined, or solvent-extracted. In the present work, 130 samples of olive oil were analyzed, the sterol fractions were separated from the unsaponifiable fraction by silica gel plate chromatography, and later they were analyzed as the trimethylsilyl ether derivatives by capillary column gas chromatography. From the results obtained, it was concluded that this methodology is able to differentiate among virgin, refined, and solvent-extracted olive oils. Stigmasterol, clerosterol, Δ5-avenasterol, Δ7-stigmasterol, and Δ7-avenasterol permit the differentiation of the three types of oil from one another. Campesterol, Δ5, 23-stigmastadienol, β-sitosterol, and Δ5,24-stigmastadienol permit the differentiation of only two oils from each other but confirm the conclusions obtained for other sterols. Correlations between the different sterols of virgin, refined, and solven-extracted olive oil also have been obtained.  相似文献   

7.
13C Nuclear magnetic resonance (NMR) spectra of 104 oil samples were obtained and analyzed in order to study the use of this technique for routine screening of virgin olive oils. The oils studied included the following: virgin olive oils from different cultivars and regions of Europe and north Africa, and refined olive, “lampante” olive, refined olive pomace, high-oleic sunflower, hazelnut, sunflower, corn, soybean, rapeseed, grapeseed, and peanut oils, as well as mixtures of virgin olive oils from different geographical origins and mixtures of 5–50% hazelnut oil in virgin olive oil. The analysis of the spectra allowed us to distinguish among virgin olive oils, oils with a high content of oleic acid, and oils with a high content of linoleic acid, by using stepwise discriminant analysis. This parametric method gave 97.1% correct validated classifications for the oils. In addition, it classified correctly all the hazelnut oil samples and the mixtures of hazelnut oil in virgin olive oil assayed. All of these results suggested that 13C NMR may be used satisfactorily for discriminating some specific groups of oils, but to obtain 100% correct classifications for the different oils and mixtures, more information than that obtained from the direct spectra of the oils is needed.  相似文献   

8.
The European Parliament identifies virgin olive oil (VOO) as one of the foods which are often subject to fraudulent activities. Possibilities of adulteration are the application of illegal soft deodorization of extra virgin olive oil (EVOO) or the commercialization of blends of EVOO with soft‐deodorized EVOO or refined vegetable oils. Despite the search for possibilities to prove the illegal soft deodorization of EVOO or the addition of cheaper vegetable oils to EVOO, suitable methods are still missing. Therefore, the aim of the study is to develop a new analytical and statistical approach addressing detection of mild deodorization or addition of refined foreign oils. For this purpose, VOOs are treated in lab‐scale for 1 h up to 28 days at different temperatures (20, 50, 60, 80,100, 110, and 170 °C) in order to simulate and study the effect of heat treatment on known analytical parameters by near infrared spectroscopy (NIR). A logit regression model enabling the calculation of the probability for a heat treatment is developed. This new methodology allows detecting both soft deodorized olive oils and blends of EVOO with cheaper full refined vegetable oils. Adding only 10% of full refined oil could be detected in extra VOO. Practical Applications: NIR methods combined with chemometrics have become one of the most attractive analytical tools to control quality of food. It is a simple, precise, and rapid method. All relevant analytical parameters of oxidative and thermal fat degradation can be determined in a single run and be used to detect adulterated virgin olive oils (VOOs). The use of a simple equation developed from the logistic regression using peroxide value, K‐values, p‐anisidine value, pyropheophytine, 1,2‐diacylglycerols, total polar compounds and monomeric oxidized triacylglycerols, and other well‐known parameters allows to detect mild deodorized olive oils or also blends of VOO with soft‐deodorized ones or the addition of low amounts of foreign vegetable oils. This technique has potential to be used as a screening method for the detection of adulterated olive oils using both the traditional laboratory methods and the corresponding NIR‐methods.  相似文献   

9.
Color measurements have been performed using eighteen virgin-olive-oil tasting cups with ten different commercial virgin olive oils, positioned in a color cabinet with a D65 source. Three geometries (spectroradiometer tilted 0°, 30°, and 60°) were employed, simulating different positions of the taster’s eye. Our main goal was to test whether traditional blue-tinted cups effectively conceal the color of virgin olive oils, as desired in sensorial analyses. None of the cups employed had all their geometrical dimensions within the standardized values, despite being cups used in official sensorial analyses. Measuring a magnitude similar to the spectral transmittance, we found substantial differences among the glasses of the eighteen tasting cups. Comparing color variability for one virgin olive oil in different tasting cups, and one tasting cup with different virgin olive oils, we discovered that: (1) variability was higher in the case of one virgin olive oil in different cups; (2) in both cases the variability increased with the tilt of the spectroradiometer; (3) even when the variability was lowest (i.e., 0° measurements for two oils in the same cup), the average color difference was above typical visual thresholds in simultaneous comparison experiments. In the most usual case of a successive comparison between two oils in the same tasting cup, it is expected that in most cases tasters will perceive color differences between the oils when their eyes are tilted 60° with respect to the horizontal, but not when they observe the cup in the horizontal direction. In summary, blue-tinted olive-oil-tasting cups reduce, but do not completely conceal, oil color. The use of opaque tasting cups with black walls is suggested.  相似文献   

10.
The adulteration of extra virgin olive oil with cheaper oils is a major problem in the olive oil market. In this study, near-infrared, mid-infrared, and Raman spectroscopic techniques were used to quantify the amount of olive pomace oil adulteration in extra virgin olive oil. The concentration of olive pomace oil in extra virgin olive oil was in the range between 0 and 100% in 5% increments by weight. Of the methods studied, Fourier transform-Raman spectroscopy gave the highest correlation with a correlation coefficient of 0.997 and a standard error of prediction of 1.72%. The spectroscopic techniques have the potential to become a tool for rapid determination of adulteration in extra virgin olive oil, because they are casy to use and cost-effective.  相似文献   

11.
13C NMR spectra of oil fractions obtained chromatographically from 109 vegetable oils were obtained and analyzed to evaluate the potential use of those fractions in the classification of vegetable oils and to compare the results with the NMR analysis of complete oils. The oils included the following: virgin olive oils from different cultivars and regions of Europe and north Africa; “lampante” olive, refined olive, refined olive pomace, hazelnut, rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils; and mixtures of virgin olive oils from different geographical origins. Oils were divided into two sets of samples. The training set (98 samples) was employed to select the variables that resulted in significant discrimination among the different oil classes. By using stepwise discriminant analysis, more than 98% of correct validated assignments were obtained; these results were confirmed when applied to the test set (11 blind samples). Results suggest that the use of oil fractions considerably increases the discriminating power of NMR in the analysis of vegetable oils.  相似文献   

12.
The factors influencing the oxidative stability of different commercial olive oils were evaluated. Comparisons were made of (i) the oxidative stability of commercial olive oils with that of a refined, bleached, and deodorized (RBD) olive oil, and (ii) the antioxidant activity of a mixture of phenolic compounds extracted from virgin olive oil with that of pure compounds andα-tocopherol added to RBD olive oil. The progress of oxidation at 60°C was followed by measuring both the formation (peroxide value, PV) and the decomposition (hexanal and volatiles) of hydroperoxides. The trends in antioxidant activity were different according to whether PV or hexanal were measured. Although the virgin olive oils contained higher levels of phenolic compounds than did the refined and RBD oils, their oxidative stability was significantly decreased by their high initial PV. Phenolic compounds extracted from virgin olive oils increased the oxidative stability of RBD olive oil. On the basis of PV, the phenol extract had the best antioxidant activity at 50 ppm, as gallic acid equivalents, but on the basis of hexanal formation, better antioxidant activity was observed at 100 and 200 ppm.α-Tocopherol behaved as a prooxidant at high concentrations (>250 ppm) on the basis of PV, but was more effective than the other antioxidants in inhibiting hexanal formation in RBD olive oil.o-Diphenols (caffeic acid) and, to a lesser extent, substitutedo-diphenols (ferulic and vanillic acids), showed better antioxidant activity than monophenols (p- ando-coumaric), based on both PV and hexanal formation. This study emphasizes the need to measure at least two oxidation parameters to better evaluate antioxidants and the oxidative stability of olive oils. The antioxidant effectiveness of phenolic compounds in virgin olive oils can be significantly diminished in oils if their initial PV are too high.  相似文献   

13.
The application of discriminant analysis for identifying and quantifying adulterants in extra virgin olive oils is presented. Three adulterants were used (sunflower oil, rapessed oil, and soybean oil) and were present in the range 5–95%. Near-infrared spectroscopy and principal components analysis were used to develop a discriminant analysis equation that could identify correctly the type of seed oil present in extra virgin olive oil in 90% of cases. Partial least squares analysis was used to develop a calibration equation that could predict the level of adulteration. Cross validation suggested that it was possible to measure the level of adulteration to an accuracy of ±0.9%. External validation of the derived calibation equation gave a standard error of performance of ±2.77%.  相似文献   

14.
Analysis of the polar fraction from virgin olive oil and pressed hazelnut oil by high-performance liquid chromatography showed marked differences in the chromatograms of the polar components in the two oils. Six commercial samples of pressed hazelnut oil and 12 samples of virgin olive oil (or blended olive oil including virgin olive oil) were analyzed. The phenolic content of the pressed hazelnut oil samples was 161±6 mg·kg−1. Inspection of the chromatograms showed that the pressed hazelnut oil extracts contained a component that eluted in a region of the chromatogram that was clear in the olive oil samples, and consequently this component could be used to detect adulteration of virgin olive oil by pressed hazelnut oil. The component had a relative retention time of 0.9 relative to 4-hydroxybenzoic acid added to the oil as an internal standard. The ultraviolet spectrum of the component showed a maximum at 293.8 nm, but the component could not be identified. Analysis of blends of oils showed that adulteration of virgin olive oil by commercial pressed hazelnut oil could be detected at a level of about 2.5%.  相似文献   

15.
The potential of fluorescence spectroscopy for detecting adulteration of extra virgin olive oil with olive oil was investigated. Synchronous fluorescence spectra were collected in the region of 240–700 nm with wavelength intervals (Δλ) of 10, 30, 60 and 80 nm. Regression models were used to quantify the detection limits of adulteration. The technique applied proved to be useful for detecting the addition of olive oil to extra virgin olive oil. The lowest detection limits of adulteration (8.9% and 8.4%) were observed when the wavelength interval applied were 60 and 80 nm, respectively.  相似文献   

16.
Refined olive oil and olive‐pomace oil were enriched with olive leaf phenolic compounds in order to enhance its quality and bring it closer to virgin olive oil. The changes that occurred in the concentrations of pure oleuropein, oleuropein aglycone, hydroxytyrosol acetyl and α‐tocopherol at 400 µg/kg of oil during the storage of refined olive oil and olive‐pomace oil under accelerated conditions (50 °C) were investigated. In a period of 4 months, α‐tocopherol decomposed by 75% whereas less than 40% of the phenols were lost. During storage, enzymatic olive leaf extract hydrolysate that contains two major compounds, hydroxytyrosol and oleuropein aglycone showed the highest antioxidant activity and the lowest detected stability, followed by oleuropein. The oleuropein in olive leaf extracts exhibited similar degradation profiles, reducing by 60–50% and 80% for the olive oil and olive‐pomace oil in 6 months, respectively. The acetylated extract, however, displayed a loss of 10 and 5% in olive oil and olive‐pomace oil, respectively. In the fatty acid composition, an increase in oleic acid and a decrease in linoleic acid were observed. The antiradical activities of the olive oil and olive‐pomace oil enriched with olive leaf phenolic compounds at 400 ppm showed that enzymatic hydrolysate extract had the highest protective effect against oil oxidation. Based on the Rancimat method, the oils with added leaf enzymatic hydrolysate extract had the lowest peroxide value and the highest stability. After 6 months of storage and at 120 °C, the oxidative resistance of refined olive oil and olive‐pomace oil reached 0.71 and 0.89 h, respectively, whereas that of the non‐enriched samples fell to zero.  相似文献   

17.
One hundred nine oil samples were separated chromatographically to obtain oil fractions with a decreased TAG content but with enhanced levels of the minor components that define oil genuineness and quality. The oils, which included virgin olive oils from different cultivars and regions of Europe and north Africa and refined olive, “lampante” olive, refined olive pomace, hazelnut, rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils, were fractionated on a silica gel column with hexane/diethyl ether as the mobile phase eluent. The method was highly reproducible, and the fraction obtained contained about 15% unmodified TAG and 85% polar compounds, which included polymeric TAG, oxidized TAG, DAG, MAG, and FFA, in addition to other minor polar components of the oils. The presence of these compounds, in an enriched fraction, should provide information about the thermal, oxidative, and hydrolytic alterations of the oils, as well as many compounds of interest in determining oil genuineness. The results indicate that these fractions can provide more information than the original oils for NMR or other spectroscopic studies used in the determination of oil quality.  相似文献   

18.
Olives were collected from various districts of Turkey (North and South Aegean sub-region, Bursa-Akhisar, South East Anatolia region) harvested over seven (2001–2007) seasons. The aim of this study was to characterize the chemical profiles of the oils derived from single variety Turkish olives including Ayvalik, Memecik, Gemlik, Erkence, Nizip Yaglik and Uslu. The olive oils were extracted by super press and three phase centrifugation from early harvest olives. Chosen quality indices included free fatty acid content (FFA), peroxide value (PV) and spectrophotometric characteristics in the ultraviolet (UV) region. According to the FFA results, 46% (11 out of 24 samples) were classified as extra virgin olive oils; whereas using the results of PV and UV, over 83% (over 19 of the 24 samples) had the extra virgin olive oil classification. Other measured parameters included oil stability (oxidative stability, chlorophyll pigment, pheophytin-α), cistrans fatty acid composition and color index. Oxidative stability among oils differed whereas the cis–trans fatty acid values were within the national and international averages. Through the application of two multivariate statistical methods, Principal component and hierarchical analyses, early harvest virgin olive oil samples were classified according to the geographical locations categorized in terms of fatty acid profiles. Such statistical clustering gave rise to defined groups. These data provide evidence of the variation in virgin olive oil quality, especially early harvest and cistrans isomers of fatty acid profiles from the diverse agronomic conditions in the olive growing regions of Turkey.  相似文献   

19.
Reports on the methylsterol fractions of hazelnut oils are scarce. The objectives of this study were to characterize methylsterols in hazelnut and virgin olive oils and to study the possibility of detection of adulteration of virgin olive oils. In hazelnut oils, 4-desmethylsterols were present in higher proportions (86 to 91%) than in virgin olive oils where this fraction was ca. 50% of the total sterol. In the 4-monomethylsterol fraction, citrostadienol was the major component in both kinds of oils followed by cycloeucalenol and obtusifoliol in virgin olive oils, and obtusifoliol in hazelnut oils. 24-Methylenecycloartanol was predominant in both kinds of oils in the 4,4′-dimethylsterols. For the first time, δ-amyrin was tentatively identified by comparing published mass spectral data in the analyzed samples of both kinds of oils. An unknown compound X (containing a lupane skeleton) and lupeol were detected only in the 4,4′-dimethylsterols fraction of hazelnut oils at a level of 2–8 and 6–10%, respectively. GC-MS analysis showed that adulteration of virgin olive oil by hazelnut oil could be detected at a level less than 4% by using these two compounds as possible potential markers.  相似文献   

20.
The triterpene alcohol fraction in several virgin olive oils and the corresponding oils refined by alkali and by physical processes was analyzed by gas chromatography. A Δ7 compound was detected in all refined olive oils but not in virgin olive oils. This compound was tentatively identified by gas chromatography-mass spectrometry as 24-methyl-5α-lanosta-7,24-dien-3β-ol, a 24-methylenecycloartanol isomer produced during the refining process by the opening of the 9, 19 cyclopropane ring with formation of a double bond in the Δ7 position and the translocation of a double bond in the side chain from the 24–28 to the 24–25 position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号