首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Editor’s note: Donald F. Adams was Past President of the Air Pollution Control Association in 1983 when he led a delegation of air quality experts to the People’s Republic of China for a technical information exchange. Professor Adams has provided an informative (and humorous) report of this technical exchange and we are pleased to share it with the readers of JAPCA.  相似文献   

2.
This paper examines the history of air pollution control in the State of New Jersey, particularly, how it relates to the development of the state-local governmental relationship, and to the coordination of their respective control efforts. It also describes the methodology for developing local control programs. The information presented in the paper is directed to those individuals who may be able to analogize the experience in New Jersey to situations developing in their own jurisdictions.  相似文献   

3.
Selection of acceptable sites for industrial facilities, especially hazardous waste management facilities, can be made using a relatively new technique referred to as “fuzzy set analysis.” The methodology presented is applicable to multiple alternative decision making, when criteria are of unequal importance, and is based on the concept of establishing a subjective value for each alternative according to each criterion, and then raising the subjective value to a power commensurate with the relative importance of the criterion. This exponential weight is calculated on the basis of a preferential analysis of criteria comparisons. Apart from the ranking of the alternatives, fuzzy set analysis provides a quantitative representation of the community opinion of the order of importance of the criteria, regardless of the sites being considered. Based on the importance factors averaged from a cross section of the community, public concern could also be ranked.  相似文献   

4.
A comprehensive air quality modeling project was carried out to simulate regional source contributions to secondary and total (=primary + secondary) airborne particle concentrations in California's Central Valley. A three-week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for study using the air quality and meteorological data collected during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS). The UCD/CIT mechanistic air quality model was used with explicit decomposition of the gas phase reaction chemistry to track source contributions to secondary PM. Inert artificial tracers were used with an internal mixture representation to track source contributions to primary PM. Both primary and secondary source apportionment calculations were performed for 15 size fractions ranging from 0.01 to 10 μm particle diameters. Primary and secondary source contributions were resolved for fugitive dust, road dust, diesel engines, catalyst equipped gasoline engines, non-catalyst equipped gasoline engines, wood burning, food cooking, high sulfur fuel combustion, and other anthropogenic sources.Diesel engines were identified as the largest source of secondary nitrate in central California during the study episode, accounting for approximately 40% of the total PM2.5 nitrate. Catalyst equipped gasoline engines were also significant, contributing approximately 20% of the total secondary PM2.5 nitrate. Agricultural sources were the dominant source of secondary ammonium ion. Sharp gradients of PM concentrations were predicted around major urban areas. The relative source contributions to PM2.5 from each source category in urban areas differ from those in rural areas, due to the dominance of primary OC in urban locations and secondary nitrate in the rural areas. The source contributions to ultra-fine particle mass PM0.1 also show clear urban/rural differences. Wood smoke was found to be the major source of PM0.1 in urban areas while motor vehicle sources were the major contributor of PM0.1 in rural areas, reflecting the influence from two major highways that transect the Valley.  相似文献   

5.
Abstract

The Clean Air Act Amendments of 1990 (CAAA-90) list 189 hazardous air pollutants (HAPs) for which “safe” ambient concentrations are to be determined. The primary purpose of this paper is to develop two mathematical models, lognormal and logarithmic, that effectively express excess lung cancer mortality as a function of asbestos concentration for an example set of data and also to suggest using these two models for additional HAPs. The secondary purpose of this paper is to calculate a “safe” asbestos concentration by first assuming a default linear extrapolation (to one excess death per million people, as specified for carcinogenic HAPs). The resulting “safe” concentration is an impossible-to-achieve 1/1000 of present background asbestos concentrations. A letter to the editor and a response in this Journal issue use additional asbestos data that suggest that the “safe” concentration should be about 730 times higher than first calculated here and that a default nonlinear extrapolation should be used instead, with the “safe” concentration proportional to the desired mortality level raised to the 0.39 power. These results suggest that the most important problem in setting a “safe” concentration for each carcinogenic HAP is to determine the correct nonlinear extrapolation to use for each HAP.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号