首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of coke in the blast furnace is influenced by its inherent mineral matter, the formation of which is itself dependent upon the nature of the coal mineral matter. To date few studies have been made of coke mineralogy and its relationship to the mineralogy of the parent coal. In this study the effect of carbonisation on coal mineral matter has been investigated by a detailed quantitative mineralogical examination of nine cokes and their parent coals. The quantitative analysis was performed on X-ray diffraction patterns of the mineral matter of cokes and coals, using SIROQUANT. Coke mineralogy and its composition varied strongly between cokes, more strongly than variations in elemental composition of the ash. The mineral matter in the studied cokes consisted of crystalline mineral phases and also significant levels of amorphous phase (ranging between 44 and 75%). Decomposition of clays such as kaolinite, montmorillonite, illite and chamosite produced the amorphous phase and some of the crystalline mineral phases such as mullite, γ-alumina, spinel, cristobalite and leucite. The type of association of mineral matter in coals had an important role in how the clays decomposed. For example, association of kaolinite with silica-bearing minerals in intimate intermixture favoured formation of mullite over γ-alumina. Akermanite and diopside result from reaction of kaolinite with associated calcium bearing minerals (calcite, dolomite or ankerite). Quartz, fluorapatite and the three polymorphs of TiO2 (anatase, brookite and rutile) were the coal minerals that were least affected during carbonisation, as they were also found in the cokes, yet even they were affected in some cases.  相似文献   

2.
The petrographic maceral composition and vitrinoid reflectance of bituminous coals have been correlated with their carbonization characteristics and are widely used to predict how coals will perform in the coking process and to calculate the strength of the resulting coke. As a result, there is a growing dependence on coal petrographic data in characterizing coals for cokemaking. In addition, there is a growing awareness that there are other nonmaceral microstructures in coal such as material size, shape, association, fracturing, and weathering which should permit better characterization of coals when properly interpreted. These nonmaceral microstructures also give an insight into the metamorphic history and changes due to burial and exhumanation.To expand the use of coal petrologic and petrographic data, a new analytical procedure has been developed that requires the microscopic determination of such nonmaceral microstructures as normal coal, coal fines, pseudovitrinoids, microbrecciation, oxidation, coarse mineral matter, miscellaneous materials, and contamination. The occurrence of one or more of these microstructures in coal, depending on their kind and abundance, may have a significant effect on the coal performance in various processes. This work has resulted in formulation of a technique for determining the nonmaceral microstructures in coal and, if applied as a supplement to the routine maceral analysis of coals, should help in explaining the anomalous behavior of some coals.  相似文献   

3.
The mineral matter in the eight reference North American coal samples of the Argonne Premium Coal series has been investigated on a quantitative basis using X-ray diffraction (XRD) techniques. X-ray diffraction data obtained from electronic low-temperature (oxygen–plasma) ash (LTA) residues, from ashes produced by heating the coals in air at 370°C, and also from the raw coals themselves, were evaluated using an interactive data processing system ( ™) based on Rietveld interpretation methods. The results from the three types of material (LTA, 370°C ash and raw coal) were compared for each sample. This allowed the components present in the raw coals in crystalline form to be recognised separately from mineral artifacts produced, particularly in the low-rank coals, from interaction of organically associated elements (Ca, S, etc.) during the two ashing processes.After the allowance for the production of any artifacts, the quantitative mineral assemblages identified from XRD of the raw coals were found to be consistent, even for coals having a relatively low ash percentage (around 5%), with the results obtained from the respective mineral concentrates prepared by the ashing methods. The effects of heating the coal to 370°C could also be distinguished, relative to the raw coal or the LTA, through changes in components such as pyrite and the clay minerals.Although some areas of uncertainty exist, particularly with magnesium in the low-rank coals, the calculated chemical compositions of the coal ash derived from the mineral mixtures identified for each coal were also found to be consistent with the results of direct chemical analysis of the respective coal ash materials.  相似文献   

4.
Leaching processes are believed to be responsible for the unusually low-ash content (sometimes less than 1%) of the thick (up to 35 m) Cretaceous coals located in the Greymouth coalfield, South Island, New Zealand. Although leaching of inorganics in peat is a generally accepted process, little is known about leaching after burial. The “Main” and “E” seams in the Greymouth coalfield show good correlation between low ash and bed thickness. The ash content, however, is often less than 1%, which is lower than most known modern analogues (i.e. peat). There are several lines of evidence that suggest that mineral matter may have been removed from the coal not only in the peat stage but also after burial. For example, etching features found in quartz grains and clay aggregates indicate that some leaching processes have taken place. In addition, liptinitic material (e.g., bitumen) in the cleat networks supports the conclusion that there has been some movement of solutions through the coal after burial. These solutions may have helped to remove some of the inorganics originally within the Greymouth coals.  相似文献   

5.
The Tertiary North East Indian coals, classified as sub-bituminous rank, have found less industrial application owing to their physico-chemical attributes. These coals are characterized by low ash (<15%), high volatile matter (>35%) and high sulphur (2.9-4.46%). Majority of the sulphur occurs in organic form affixed to the coal matrix owing to marine influence, is difficult to remove. The coal maceral analysis shows the dominance of vitrinite (>75%) with lesser amounts of liptinite and inertinite. Reflectance measurements (Rmax) of these sub-bituminous coals fall in the range of 0.57 to 0.65. In this study, the petrographical (maceral), thermal and other physico-chemical analyses of some low rank Tertiary sub-bituminous coals from north-east India were carried out to assess their potential for combustion, liquefaction and coal bed methane formation. The petrofactor, conversion (%) and oil yield (%), combustion efficiency of the coal samples were determined. The respective linear correlations of conversion (%) of the coals with their vitrinite contents, petrofactor and oil yield values have been discussed. The relative combustion efficiency of the coals was measured from the thermo gravimetric analysis (TGA) of coals. The influence of maceral composition upon gas adsorption characteristics of these high volatile coals showed the increase in methane adsorption with vitrinite enrichment. Both the maceral and mineral matter contents were observed to have important influence on the gas adsorption characteristics.  相似文献   

6.
Abstract

Mineral matter in coals has been found to host valuable elements including germanium, lithium and rare-earth elements (REE), but such content of Australian coals remains under-explored. The aim of this paper is to provide a proof-of-concept study that determines elemental concentrations in the mineral matter of the high-ash, Fort Cooper Coal Measures (FCCM), Bowen Basin, Queensland. Coal in the FCCM has good coking properties but has not been extensively explored owing to its high ash content. This study performs a preliminary assessment of the elements from the coal portion that would typically become waste after washing or combustion. Given that the needs for industrial extraction methods will change over time, cataloguing and documenting the elemental composition of coal may assist future development of multiple products for the benefit of both the coal and mineral industries. This preliminary study has revealed similar elevations of REE and higher-than-average crustal concentrations of lithium, bismuth and scandium in some of the samples. Further analyses will be required on a larger dataset to better understand elemental associations and explore spatial patterns of elemental content that may indicate localised enrichments. Understanding the potential of valuable elements in the FCCM may stimulate interest in multiple-product-coal (or elemental-coal) mining in this under-exploited resource and further encourage the reduction of waste from other Australian coals at the wash-plant stage.  相似文献   

7.
《Applied Geochemistry》2001,16(7-8):911-919
A total of 48 samples, feed (run-of-mine) coals and their combustion residues (fly ash and bottom ash) were systematically collected twice a week over a 4 week period (June 1998) from two boiler units (I and II) of the Cayirhan power plant (630 MW) that burns zeolite-bearing coals of late Miocene age. The feed coals are high in moisture (22.8% as-received) content and ash (44.9%) yield and total S content (5.1%), and low in calorific value (2995 kcal/kg). The mineralogy of the feed coals contains unusually high contents of the zeolites (clinoptilolite/heulandite and analcime), which are distributed within the organic matter of coal. Other minerals determined are gypsum, quartz, feldspar, pyrite, dolomite, calcite, cristobalite and clays. Common minerals in the crystalline phase of the combustion residues are anhydrite, feldspar, quartz, hematite, lime and Ca–Mg silicate. Minor and trace amounts of magnetite, cristobalite, maghemite, gehlenite, calcite and clinoptilolite/heulandite are also present in the combustion residues. Trace element contents of the feed coals, except for W, fall within the estimated range of values for most world coals; however, the mean values of Mn, Ta, Th, U and Zr are near maximum values of most world coals. Elements such as As, Bi, Ge, Mo, Pb, Tl, W and Zn are enriched more in the fly ash compared to the bottom ash.  相似文献   

8.
This study is related to four Jurassic-age bituminous coal (0.69–1.02 Ro%) samples collected from coal mines from the west, central and east of central, Alborz in northern Iran. Geological settings played key roles in determining the geochemistry and mineralogy of coals from the central Alborz region of northern Iran. The mineralogy of coals from the eastern part of the region is dominated by kaolinite; halloysite; and carbonates such as calcite, dolomite/ankerite, and siderite. The coals were deposited in a lacustrine environment. In the western part of the region, where the depositional setting was also lacustrine with volcanic input and tonstein deposition (glass shards present), the coal primarily contains kaolinite (68%) and fluorapatite (26%). In contrast, coal from the central part of the region, which was deposited in a terrestrial environment and on eroded limestone and dolomite rocks, is dominated by dolomite (98%) with little input by kaolinite. These coals have low sulphur (0.35–0.70 wt.%), which is mostly in the organic form (0.34–0.69 wt.%). Pyritic sulphur is detected only in one coal and in small quantities. The boron contents of these coals range from 9 to 33 mg/kg, indicating that deposition occurred in a fresh water environment. Coal with higher concentrations of Ba, Sr, and P contain fluorapatite and goyazite–gorceixite series [BaAl3 (PO4)2 (OH)5, H2O] minerals, which indicates volcanoclastic input. Compared to world coal averages, these coals exhibit low concentrations of elements of environmental concern, such as As (1.3–5.9 mg/kg), Cd (< 0.02–0.06 mg/kg), Hg (< 0.01–0.07 mg/kg) Mo (< 0.6–1.7 mg/kg), Pb (4.8–13 mg/kg), Th (0.5–21 mg/kg), Se (< 0.2–0.8 mg/kg) and U (0.2–4.6 mg/kg). Two of the northern Iranian coals have concentrations of Cl (2560 and 3010 mg/kg) that are higher than world coal average.  相似文献   

9.
The effect of mineral matter on the laboratory pyrolysis of sediments, kerogens and coals, and of coal macerals mixed with either alumina, bentonite, kaolinite, or calcium carbonate has been investigated. Some minerals are more active than others in effecting changes in the composition of the pyrolysate. The relative content of low molecular weight pyrolysis products is higher for kerogens pyrolyzed in a mineral matrix than for isolated kerogens. Our limited data suggests that this is due to both condensation and gasification of higher molecular weight constituents in the ‘primary’ pyrolysate. Differences in the content of aromatic versus aliphatic compounds have been noted when pyrograms from coal macerals are compared with pyrograms from coal maceral-mineral mixtures. We conclude that mineralogy is important in controlling the composition of kerogen pyrolysis products.  相似文献   

10.
A review of chlorine and bromine in some United Kingdom coals   总被引:1,自引:0,他引:1  
In the UK there is a longstanding interest in the Cl content of coals because of the adverse effects associated with high-Cl coals during combustion. An average Cl content of a representative suite of coal samples is 0.44 wt.%, but the range is from near zero to over 1%. Several lines of evidence show that in the high-Cl coals the Cl is associated with the coal moisture and that other sources, such as the silicate minerals, are negligible. Although the Cl is moisture associated there is anion exchange with the organic matter, which means that Cl is less than 100% water- soluble unless the Cl is exchanged with other anion species. This occurs if carbonates are present and calcite in particular. The Cl and Br are closely related and the location within the coal is thought to be common to both. These two elements differ from nearly all other trace elements in UK coals in that they are not present in significant concentrations in the mineral matter or bound within the organic matter. Whereas there is a good understanding of the geochemical behaviour of these other elements this is not the case for Cl and Br in the coal moisture. Chlorine and Br are thought to be conservative elements in the diagenetic evolution of the porewaters, in which an original marine depositional imprint could have been preserved. In some areas the porewaters may have fully evolved pre-Permian, whereas in other areas the diagenetic evolution could be much longer.  相似文献   

11.
贵州燃煤型地方性砷中毒地区煤的矿物组成   总被引:4,自引:0,他引:4  
采用低温灰化(LTA)和X衍射粉晶分析(XRD),结合带X光能谱的扫描电子显微镜(SEM—EDX)等方法研究了贵州燃煤型地方性砷中毒地区煤的矿物组成,计算了各矿物的相对含量,初步探讨了煤中主要的含砷矿物。   相似文献   

12.
The elemental composition of high temperature ash (750°C) and forms of S were studied in 25 coal seams from the Escucha Formation (Middle Albian) in the Teruel Mining District, northeast Spain. The principal analytical method was ICP-MS, but ICP-ES was also used in the determination of some trace elements. The analytical data show wide ranges of trace element cotnents among the coal seams studied, even in the vertical profile of a single coal seam. These wide ranges of the trace element concentrations are attributed to both syngenetic and epigenetic processes.When a comparison was made between the average trace element contents of the Teruel Mining District coals, and those of the average content in worldwide coals, the Teruel coals show slightly higher concentrations of Be and U, and lower concentrations of Ba, Cd, Mn, Pb, Sr and Zr. Further, three main groups of trace elements were differentiated on the basis of the inorganic/organic association: (1) trace elements with inorganic affinity; Ba, Ce, Co, Cr, La, Mn, Ni, Rb and Zr. Between these, Ba, Ce, Cr and Rb show a well defined correlation with the clay mineral content, and Co and Ni with pyritic-S content; (2) trace elements with an intermediate (mixed) affinity; As, Cd, Cu, Dy, Er, Eu, Gd, Ge, Ho, Lu, Mo, Nd, Pb, Pr, Sb, Sm, Sr, Tb, Th, Tm, U, Yb and Zn. In this group, As, Cd, Cu, Ge, Mo, Th, U and Zn show a weak trend associated with the mineral matter and Sr with the organic matter; and (3) Be shows an organic affinity. The high mineral matter content (21.3% HTA) of the Teruel coals may account for the great number of elements with inorganic affinity. This classification represents a general trend, but the results show that the affinities of some trace elements (e.g. As, Sb and Zn) may vary from one coal seam to another in the Teruel Mining District.  相似文献   

13.
煤汞同位素地球化学研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
汞是煤中普遍存在的痕量元素,煤炭消耗总量之巨使燃煤成为全球汞污染主要来源之一。汞具有7种稳定同位素, 并且兼具质量分馏和非质量分馏效应,使通过汞同位素对涉煤汞污染源和汞迁移、转化示踪成为理想途径。煤中汞同位素 研究获得长足进展。第一,初步给出了世界11个产煤国煤中汞同位素δ202Hg的特征值及分布范围,为示踪环境介质汞的燃 煤源污染源创造了条件。第二,发现了原煤中汞存在奇数质量汞的非质量分馏效应(Δ199Hg≠0),有助于配合δ202Hg开展示 踪研究。第三,中国不同产煤地及不同成煤期原煤中汞同位素δ202Hg与Δ199Hg值已被测试,为中国开展煤源汞污染示踪研究 打下一定基础。进一步工作可能有待加强的4个方面:(1) 全球不同地域和时代煤中汞同位素数据库的不断补充、修正和 完善;(2) 煤炭生产遗存物,如残留煤和煤矸石等与气-水环境相互作用中的汞同位素问题;(3) 燃煤派生的且影响人类 健康的环境介质如大气细颗粒物(PM2.5) 的汞同位素问题;(4) 涉及煤火汞的迁移转化是复杂的,部分汞具有二次释放特 性,其中汞同位素问题仍是未知的。总之煤中汞及其关联的汞同位素研究方兴未艾。  相似文献   

14.
燃煤固体产物的矿物组成研究   总被引:12,自引:1,他引:12  
孙俊民 《矿物学报》2001,21(1):14-18
利用X射线衍射、穆斯堡尔谱与扫描电子显微镜等方法研究中国典型燃煤煤种的燃烧产物的矿物学特征,揭示出不同化学成分以及不同类型产物中矿物组成的差异性。根据化学成分,可将燃煤固体产物分为硅铝质、铁质和钙质三组,硅铝质产物结晶相主要为莫来石和石英,而结渣中基本为莫来石;铁质产物中主要矿物包括α-Fe2O3、γ-Fe2O3与Fe3O4,其含量随锅炉燃烧湿度的变化而变化;钙质产物中矿物种类复杂,飞灰石检出石灰、石膏和石英,沾污中检出石膏、赤铁矿和石类,而结渣中还发现钙的硅酸盐矿物。上述矿物分布特征是由不同成分的硅酸盐熔体在不同热力学条件下的结晶行为所决定的。  相似文献   

15.
工艺矿物学近十年的主要进展   总被引:4,自引:0,他引:4  
我国的工艺矿物学在过去十年中的重大进展主要表现在以下几方面:(1)矿物加工和冶金工艺矿物学的发展与应用;初步建立了矿物-生物浸矿机制和各类微生物冶金的制约因素,为生物选矿和冶金过程中工艺矿物学奠定了新的理论基础.(2)新的分析技术的发展及其应用使工艺矿物学开始从定性走向定量;探测和揭示了微生物在分子水平上与矿物表面相互作用和能量转换.这些研究将有助子了解微生物矿产开采和微生物选矿和冶金的控制因素的机制,为建立一个新的选冶工艺矿物学打下了深厚基础.(3)将矿物的晶体化学,矿物物理学,量子矿物学与工艺矿物学紧密结合,使这门应用学科不仅在选、冶、加工工艺等提取其中的某种有用元素,而且也促进了新兴的矿物材料和技术的发展.总之,在未来新的分析技术发展中,将被更广泛地用于研究矿物质,矿物-水界面和矿物-微生物界面,这不仅在新型的工艺矿物学发展中取得了好的成果,而且在环境矿物学,也有广泛的应用前景.  相似文献   

16.
Elevated polycyclic aromatic hydrocarbon (PAH) concentrations were determined in different Chinese coals, with the highest concentrations in bituminous coals. Phenanthrene (Phen) was chosen as the probe compound for PAHs to study the sorption behavior of coal. No native Phen was detected in desorption experiments indicating irreversible sorption–desorption behavior of PAHs in raw coal samples. Sorption mechanism was further studied under varying conditions of pH value and ionic strength. Different ranks of coal showed different sorption behavior under acidic, neutral, and alkaline conditions. Batch experiments were further processed for the selected coals at pH values from 3 to 11 at a constant aqueous concentration. Sorption capacities of all coals decreased with increased pH except for YJ coal. Furthermore, although DOC-associated Phen mass contributed little to the total Phen mass under different pH values, the significant negative correlations between M DOC and log K OC values were observed for all coal samples, indicating a significant role played by DOC in the coal sorption. In addition, sorption experiments under varying ionic strength showed that the ionic strength influence was more obvious in sorption isotherms for higher rank coals with increasing ionic strength, and this effect was most significant when ionic strength increased from 0 to 0.15 M, especially at relatively low aqueous concentrations.  相似文献   

17.
The association between specific mineral and organic constituents in two Asturian bituminous coals of different rank was studied. For this, raw coals were fractionated by density and the variation of a number of parameters was followed in parallel. Results of coal chemical analyses, including analyses for 22 elements, were used to establish the elemental association with coal organic matter. Petrographic analyses determined the distribution of macerals among densimetric fractions, vitrinite reflectance being at a minimum in the intermediate density fractions. Mineral species were identified by X-ray diffraction, FT-IR spectroscopy and Mössbauer spectroscopy. Comparison of trends for different parameters determined using this set of techniques allowed classification of the various minerals according to their association with organic matter. Carbonates seem to be specifically associated with the organic matter of the low-volatile bituminous coal whereas sulfides concentrate in the organic matter of the high-volatile bituminous coal. Vitrinite is the maceral exhibiting the most probable association with inorganic matter. The possibility of a merely physical association of fine-grained detrital minerals with organic matter cannot be excluded; nevertheless, one must bear in mind that even this type of interaction is important due to its effect on various coal preparation and utilization processes.  相似文献   

18.
Environmental geochemistry and health of fluorine in Chinese coals   总被引:2,自引:0,他引:2  
Fluorine is one of the potential hazardous trace elements in coal. Fluorine may be released into atmosphere mostly during coal combustion process. When the coal is burning indoors without any controlling methods (chimney), the fluorine will pollute the room and is absorbed by food fired (dried) over stoves. Now many people have suffered from fluorosis due to coal burning indoors in Southwest China. In this paper, the concentration, distribution, mode of occurrences and impact factors of fluorine in Chinese coals are analyzed. The environmental impacts and typical features of fluorosis are studied. It is concluded that the value of fluorine in Chinese coals ranges from 20 to 300 mg/kg, and with average value of 122 mg/kg from 5,603 coal samples. It is higher than the average value of the world coals (80 mg/kg). In provincial coalfields of the SW China, the content of F is highest and many people have been affected due to coal combustion indoors.  相似文献   

19.
The minerals and non-mineral inorganic constituents in Triassic and Tertiary low-rank coals from various coal deposits in South Australia were studied using selective chemical leaching and oxygen-plasma ashing techniques. Although gypsum may be present in some samples, most of the sodium, calcium and magnesium, as well as part of the sulphur, appears to occur as a combination of dissolved ions in pore water and exchangeable ions attached to carboxylate groups. Significant concentrations of iron and aluminium occur in acid-soluble form, probably as organometallic complexes within the hydrocarbon structure.Quartz is the dominant mineral in the Tertiary coal samples. It appears to be mainly detrital, but doubly terminated euhedral crystals suggest an authigenic origin in one of the deposits. Well crystallized kaolinite is common in the Triassic coals, while poorly crystallized kaolinite occurs in the Tertiary samples. Siderite, calcite and possibly collophane occur in the Triassic coals; sparse pyrite is present in both the Tertiary and the Triassic samples.The differences in minerals and other inorganic constituents between the Tertiary and Triassic deposits can be explained partly by variations in the composition of the pore waters permeating the strata, and partly by mobility of silica and alumina from different sources within the peat deposit. The relative mobility of the different inorganic constituents is also significant in beneficiation of the coal for use in combustion processes.  相似文献   

20.
As the mercury emitted from coal combustion can lead to serious environmental issues, researchers pay more attention to the content, distribution and occurrence of mercury in coal. In this paper, the content, distribution, and occurrence of mercury in the Permian tectonically deformed coals from Peigou Mine, Xinmi coalfield, Henan Province were investigated. A total of 18 bench samples were taken from No.2-1 coals seam in Peigou Mine, including 15 coal bench samples, two roofs and one floor. The mercury concentration, mineral composition, and main inorganic element content of 18 samples were determined by DMA-80 direct mercury analyzer, XRD, and XRF respectively. The results show that the mercury content ranges from 0.047 ppm to 0.643 ppm, with an average of 0.244 ppm. Though the coal seam has turned into typical tectonically deformed coal by the strong tectonic destruction and plastic deformation, the vertical distribution of mercury has remarkable heterogeneity in coal seam section. By the analysis of correlation between mercury and the main inorganic elements and the mineral composition in coal, we infer that majority of mercury mainly relates to pyrite or kaolinite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号