首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— The 40Ar‐39Ar dating technique has been applied to the lunar meteorites Northwest Africa 032 (NWA 032), an unbrecciated mare basalt, and Northwest Africa 773 (NWA 773), (composed of cumulate and breccia lithologies), to determine the crystallization age and timing of shock events these meteorites may have experienced. Stepped heating analyses of several different samples of NWA 032 gave complex age spectra but indistinguishable total ages with a mean of 2.779 ± 0.014 Gyr. Possible causes of the complex age spectra obtained from NWA 032 include recoil of 39Ar, or the presence of pre‐shock 40Ar incorporated into shock‐melt veins. The effects of shock veins were investigated by laser fusion of 20 small samples expected to contain varying proportions of the shock veins. The laser ages show a narrow age distribution between 2.61–2.86 Gyr and a mean of 2.73 ± 0.03 Gyr, identical to the total age of ?2.80 Gyr obtained for the bulk sample. Diffusion calculations based on the stepped heating data indicate that Ar release can be reconciled by release from feldspar (and possibly shock veins) at low temperatures followed by pyroxene at higher temperatures. The exposure age of NWA 032 is 212 ± 11 Myr, and it contains low trapped solar Ar. Stepped heating of cumulate and breccia portions of NWA 773 also give a relatively young age of 2.91 Gyr. The presence of trapped Ar in the breccia makes the age determination of this component less precise, but release of Ar appears to be from the same mineral phase, assumed to be plagioclase, in both lithologies. A marked difference in exposure age between the 2 lithologies also exists, with the breccia having spent 81 Myr longer at the lunar surface; this finding is consistent with the higher trapped Ar content of this lithology. Assuming that 2.80 Gyr and 2.91 Gyr are the crystallization ages of NWA 032 and NWA 773 respectively, these two meteorites are the youngest lunar mare basalts available for study.  相似文献   

2.
Abstract— We report on the bulk composition and petrography of four new basaltic meteorites found in Antarctica—LAP (LaPaz Icefield) 02205, LAP 02224, LAP 02226, and LAP 02436—and compare the LAP meteorites to other lunar mare basalts. The LAP meteorites are coarse‐grained (up to 1.5 mm), subophitic low‐Ti basalts composed predominantly of pyroxene and plagioclase, with minor amounts of olivine, ilmenite, and a groundmass dominated by fayalite and cristobalite. All of our observations and results support the hypothesis that the LAP stones are mutually paired with each other. In detail, the geochemistry of LAP is unlike those of any previously studied lunar basalt except lunar meteorite NWA (Northwest Africa) 032. The similarities between LAP and NWA 032 are so strong that the two meteorites are almost certainly source crater paired and could be two different samples of a single basalt flow. Petrogenetic modeling suggests that the parent melt of LAP (and NWA 032) is generally similar to Apollo 15 low‐Ti, yellow picritic glass beads, and that the source region for LAP comes from a similar region of the lunar mantle as previously analyzed lunar basalts.  相似文献   

3.
Northwest Africa (NWA) 4734 is an unbrecciated basaltic lunar meteorite that is nearly identical in chemical composition to basaltic lunar meteorites NWA 032 and LaPaz Icefield (LAP) 02205. We have conducted a geochemical, petrologic, mineralogic, and Sm‐Nd, Rb‐Sr, and Ar‐Ar isotopic study of these meteorites to constrain their petrologic relationships and the origin of young mare basalts. NWA 4734 is a low‐Ti mare basalt with a low Mg* (36.5) and elevated abundances of incompatible trace elements (e.g., 2.00 ppm Th). The Sm‐Nd isotope system dates NWA 4734 with an isochron age of 3024 ± 27 Ma, an initial εNd of +0.88 ± 0.20, and a source region 147Sm/144Nd of 0.201 ± 0.001. The crystallization age of NWA 4734 is concordant with those of LAP 02205 and NWA 032. NWA 4734 and LAP 02205 have very similar bulk compositions, mineral compositions, textures, and ages. Their source region 147Sm/144Nd values indicate that they are derived from similar, but distinct, source materials. They probably do not sample the same lava flow, but rather are similarly sourced, but isotopically distinct, lavas that probably originate from the same volcanic complex. They may have experienced slightly different assimilation histories in route to eruption, but can be source‐crater paired. NWA 032 remains enigmatic, as its source region 147Sm/144Nd definitively precludes a simple relationship with NWA 4734 and LAP 02205, despite a similar bulk composition. Their high Ti/Sm, low (La/Yb)N, and Cl‐poor apatite compositions rule out the direct involvement of KREEP. Rather, they are consistent with low‐degree partial melting of late‐formed LMO cumulates, and indicate that the geochemical characteristics attributed to urKREEP are not unique to that reservoir. These and other basaltic meteorites indicate that the youngest mare basalts originate from multiple sources, and suggest that KREEP is not a prerequisite for the most recent known melting in the Moon.  相似文献   

4.
Abstract— Quantitative textural data for Northwest Africa (NWA) 032 and the LaPaz (LAP) mare basalt meteorites (LAP 02205, LAP 02224, LAP 02226, and LAP 02436) prvide constraints on their crystallization and mineral growth histories. In conjunction with whole‐rock and mineral chemistry, textural analysis provides powerful evidence for meteorite pairing. Petrographic observations and crystal size distribution (CSD) measurements of NWA 032 indicate a mixed population of slowly cooled phenocrysts and faster cooled matrix. LaPaz basalt crystal populations are consistent with a single phase of nucleation and growth. Spatial distribution patterns (SDP) of minerals in the meteorites highlight the importance of clumping and formation of clustered crystal frameworks in their melts, succeeded by continued nucleation and growth of crystals. This process resulted in increasingly poor sorting, during competition for growth, as the melt crystallized. Based on CSD and SDP data, we suggest a potential lava flow geometry model to explain the different crystal populations for NWA 032 and the LaPaz basalts. This model involves crystallization of early formed phenocrysts at hypabyssal depths in the lunar crust, followed by eruption and flow differentiation on the lunar surface. Lava flow differentiation would allow for formation of a cumulate base and facilitate variable cooling within the stratigraphy, explaining the varied textures and modal mineralogies of mare basalt meteorites. The model may also provide insight into the relative relationships of some Apollo mare basalt suites, shallow‐level crystal fractionation processes, and the nature of mare basalt volcanism over lunar history.  相似文献   

5.
Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first‐discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg‐suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact‐related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact‐induced shock.  相似文献   

6.
Abstract– Northwest Africa (NWA) 2977 is an olivine‐gabbro lunar meteorite that has a distinctly different petrographic texture from other lunar basalts. We studied this rock with a series of in situ analytical methods. NWA 2977 consists mainly of olivine and pyroxene with minor plagioclase. It shows evidence of intense shock metamorphism, locally as high as shock‐stage S6. Olivine adjacent to a melt vein has been partially transformed into ringwoodite and Al,Ti‐rich chromite grains have partially transformed into their high‐pressure polymorph (possibly CaTi2O4‐structure). Olivine in NWA 2977 contains two types of lithic inclusions. One type is present as Si,Al‐rich melt inclusions that are composed of glass and, in most cases, dendritic pyroxene. The other type is mafic and composed of relatively coarse‐grained augite with accessory chromite, RE‐merrillite, and baddeleyite. Two Si,Al‐rich melt inclusions are heavy rare earth elements (REE) enriched, whereas the mafic inclusion has high REE concentrations and a KREEP‐like pattern. The mafic inclusion could be a relict fragment captured during the ascent of the parent magma of NWA 2977, whereas the Si,Al‐rich inclusions may represent the original NWA 2977 melt. The calculated whole‐rock composition has a KREEP‐like REE pattern, suggesting that NWA 2977 has an affinity to KREEP rocks. Baddeleyite has recorded a young crystallization age of 3123 ± 7 Ma (2σ), which is consistent with results from previous whole‐rock and mineral Sm‐Nd and Rb‐Sr studies. The petrography, mineralogy, trace element geochemistry, and young crystallization age of NWA 2977 support the possibility of pairing between NWA 2977 and the olivine‐gabbro portion of NWA 773.  相似文献   

7.
8.
The Northwest Africa (NWA) 2996 meteorite is a lunar regolith breccia with a “mingled” bulk composition and slightly elevated incompatible element content. NWA 2996 is dominated by clasts of coarse‐grained noritic and troctolitic anorthosite containing calcic plagioclase (An#~98) and magnesian mafic minerals (Mg#~75), distinguishing it from Apollo ferroan anorthosites and magnesian‐suite rocks. This meteorite lacks basalt, and owes its mingled composition to a significant proportion of coarse‐grained mafic clasts. One group of mafic clasts has pyroxenes similar to anorthosites, but contains more sodic plagioclase (An#~94) distinguishing it as a separate lithology. Another group contains Mg‐rich, very low‐titanium pyroxenes, and could represent an intrusion parental to regional basalts. Other clasts include granophyric K‐feldspar, disaggregated phosphate‐bearing quartz monzodiorites, and alkali‐suite fragments (An#~65). These evolved lithics are a minor component, but contain minerals rich in incompatible elements. Several anorthosite clasts contain clusters of apatite, suggesting that the anorthosites either assimilated evolved rocks or were metasomatized by a liquid rich in incompatible elements. We used Lunar Prospector gamma‐ray spectrometer remote sensing data to show that NWA 2996 is most similar to regoliths in and around the South Pole Aitken (SPA) basin, peripheral regions of eastern mare, Nectaris, Crisium, and southern areas of Mare Humorum. However, the mineralogy of NWA 2996 is distinctive compared with Apollo and Luna mission samples, and is likely consistent with an origin near the SPA basin: anorthosite clasts could represent local crustal material, mafic clasts could represent intrusions beneath basalt flows, and apatite‐bearing rocks could carry the SPA KREEP signature.  相似文献   

9.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   

10.
Abstract— Northwest Africa 482 (NWA 482) is a crystalline impact‐melt breccia from the Moon with highlands affinities. The recrystallized matrix and the clast population are both highly anorthositic. Clasts are all related to the ferroan anorthosite suite, and include isolated plagioclase crystals and lithic anorthosites, troctolites, and spinel troctolites. Potassium‐, rare‐earth‐element‐, and phosphorus‐bearing (KREEP) and mare lithologies are both absent, constraining the source area of this meteorite to a highland terrain with little to no KREEP component, most likely on the far side of the Moon. Glass is present in shock veins cutting through the sample and in several large melt pockets, indicating a second impact event. There are two separate events recorded in the 40Ar‐39Ar system: one at ~3750 Ma, which completely reset the K‐Ar system, and one at ?2400 Ma, which caused only partial degassing. These events could represent, respectively, crystallization of the impact‐melt breccia and later formation of the glass, or the formation of the glass and a later thermal event. The terrestrial age of the meteorite is 8.6 ± 1.3 ka. This age corresponds well with the modest amount of weathering in the rock, in the form of secondary phyllosilicates and carbonates. Based on terrestrial age and location, lithology, and chemistry, NWA 482 is unique among known lunar meteorites.  相似文献   

11.
Lunar breccias preserve the records of geologic processes on the Moon. In this study, we report the occurrence, petrography, mineralogy, and geologic significance of the observed secondary olivine veinlets in lunar feldspathic breccia meteorite Northwest Africa (NWA) 11273. Bulk‐rock composition measurements show that this meteorite is geochemically similar to other lunar highland meteorites. In NWA 11273, five clasts are observed to host veinlets that are dominated by interconnecting olivine mineral grains. The host clasts are mainly composed of mafic minerals (i.e., pyroxene and olivine) and probably sourced from a basaltic lithology. The studied olivine veinlets (~5 to 30 μm in width) are distributed within the mafic mineral host, but do not extend into the adjacent plagioclase. Chemically, these olivine veinlets are Fe‐richer (Fo41.4–51.9), compared with other olivine grains (Fo54.3–83.1) in lithic clasts and matrix of NWA 11273. By analogy with the secondary olivine veinlets observed in meteorites from asteroid Vesta (howardite–eucrite–diogenite group samples) and lunar mare samples, our study suggests that the newly observed olivine veinlets in NWA 11273 are likely formed by secondary deposition from a lunar fluid, rather than by crystallization from a high‐temperature silicate melt. Such fluid could be sulfur‐ and phosphorous‐poor and likely had an endogenic origin on the Moon. The new occurrence of secondary olivine veinlets in breccia NWA 11273 reveals that the fluid mobility and deposition could be a previously underappreciated geological process on the Moon.  相似文献   

12.
Northwest Africa (NWA) 7611/10480 are lunar regolith breccia meteorites, composed of mineral fragments and various clasts including mare basalts, volcanic glasses, gabbroic lithologies, and a diverse variety of highland materials (ferroan anorthosite, Mg-suite, magnesian anorthosite, and alkali suite rocks) as well as different subvarieties of impact melt breccia. The Apollo two-component mixing model calculation reveals that the NWA 7611 source region contains 58 wt% mare materials and 42 wt% highland components, but the estimated mare components in NWA 10480 have a higher abundance (66 wt%). The predominantly very low-Ti (VLT) composition in both fine-grained basaltic and coarse-grained gabbroic lithologies indicates a provenance associated with a thick lava flow or a single magmatic system. The co-occurrence of zoning patterns and fine-scale exsolution lamellae in pyroxene debris supports a cryptomare deposit as the best candidate source. Phosphate Pb–Pb ages in matrix fragments, impact melt breccia, and basaltic clast indicate that the breccia NWA 7611 records geological events spanning approximately 4305–3769 Ma, which is consistent with the ages of ancient lunar VLT volcanism and the products of basin-forming impacts on the lunar nearside. The youngest reset age at ~3.2 Ga is potentially related to the strong shock lithification process of breccia NWA 7611. Moreover, the similar petrology, texture, geochemistry, cosmic-ray exposure data, and crystallization ages support that basaltic component in Yamato (Y)-793274, and Queen Alexandra Range (QUE) 94281, NWA 4884, and NWA 7611 clan came from the same basalt flow.  相似文献   

13.
Abstract— Dhofar 287 (Dho 287), a recently found lunar meteorite, consists in large part (95%) of low‐Ti mare basalt (Dho 287A) and a minor, attached portion (?5%) of regolith breccia (Dho 287B). The present study is directed mainly at the breccia portion of this meteorite. This breccia consists of a variety of lithic clasts and mineral fragments set in a fine‐grained matrix and minor impact melt. The majority of clasts and minerals appear to have been mainly derived from the low‐Ti basalt suite, similar to that of Dho 287A. Very low‐Ti (VLT) basalts are a minor lithology of the breccia. These are significantly lower in Mg# and slightly higher in Ti compared to Luna 24 and Apollo 17 VLT basalts. Picritic glasses constitute another minor component of the breccia and are compositionally similar to Apollo 15 green glasses. Dho 287B also contains abundant fragments of Mg‐rich pyroxene and anorthite‐rich plagioclase grains that are absent in the lithic clasts. Such fragments appear to have been derived from a coarse‐grained, Mg#‐rich, Na‐poor lithology. A KREEP component is apparent in chemistry, but no highlands lithologies were identified. The Dho 287 basaltic lithologies cannot be explained by near‐surface fractionation of a single parental magma. Instead, magma compositions are represented by a picritic glass; a low‐Ti, Na‐poor glass; and a low‐Ti, Na‐enriched source (similar to the Dho 287A parental melt). Compositional differences among parent melts could reflect inhomogeneity of the lunar mantle. Alternatively, the low‐Ti, Na‐poor, and Dho 287A parent melts could be of hybrid compositions, resulting from assimilation of KREEP by picritic magma. Thus, the Dho 287B breccia contains lithologies from multiple magmatic eruptions, which differed in composition, formational conditions, and cooling histories. Based on this study, the Dho 287 is inferred to have been ejected from a region located distal to highlands terrains, possibly from the western limb of the lunar nearside, dominated by mare basalts and KREEP‐rich lithologies.  相似文献   

14.
We have investigated the H and Cl systematics in apatite from four brecciated lunar meteorites. In Northwest Africa (NWA) 4472, most of the apatites contain ~2000–6000 ppm H2O with δD between ?200 and 0‰, except for one grain isolated in the matrix, which contains ~6000 ppm H2O with δD of ~500–900‰. This low‐δD apatite contains ~2500–7500 ppm Cl associated with δ37Cl of ~15–20‰, while the high‐δD grain contains ~2500 ppm Cl with δ37Cl of ~7–15‰. In NWA 773, apatites in a first group contain ~700–2500 ppm H2O with δD values averaging around ~0 ± 100‰, while apatites in a second group contain ~5500–16500 ppm H2O with δD ~250 ± 50‰. In Sayh al Uhaymir (SaU) 169 and Kalahari (Kal) 009, apatites are similar in terms of their H2O contents (~600–3000 ppm) and δD values (?100 to 200‰). In SaU 169, apatites contain ~6000–10,000 ppm Cl, characterized by δ37Cl of ~5–12‰. Overall, most of the analyzed apatite grains have δD within the range reported for carbonaceous chondrites, similar to apatite analyzed in ancient (>3.9 Ga) lunar magmatic. One grain in NWA 4472 has H and Cl isotope compositions similar to apatite from mare basalts. With an age of 4.35 Ga, this grain could be a representative of the oldest known lunar volcanic activity. Finally, since numerous evolved clasts in NWA 773 formed through silicate liquid immiscibility, the apatite grains with extremely high H2O contents, reaching pure hydroxylapatite composition, could provide insights into the effects of such process on the evolution of volatiles in lunar magmas.  相似文献   

15.
Mare basalts provide insights into the composition and thermal history of the lunar mantle. The ages of mare basalts suggest a first peak of magma activity at 3.2–3.8 Ga and a second peak at ~2 Ga. In this study, we reassess the correlation between the titanium contents and the eruption ages of mare basalt units using the compositional and chronological data updated by SELENE (Kaguya). Using morphological and geological criteria, we calculated the titanium content of 261 mare units across a representative area of each mare unit. In the Procellarum KREEP Terrane, where the latest eruptions are located, an increase in the mean titanium content is observed during the Eratosthenian period, as reported by previous studies. We found that the increase in the mean titanium content occurred within a relatively short period near approximately 2.3 Ga, suggesting that the magma source of the mare basalts changed at this particular age. Moreover, the high‐titanium basaltic eruptions are correlated with a second peak in volcanic activity near ~2 Ga. The high‐titanium basaltic eruptions occurring during the last volcanic activity period can be explained by the three possible scenarios (1) the ilmenite‐bearing cumulate rich layer in the core‐mantle boundary formed after the mantle overturn, (2) the basaltic material layers beneath the lunar crust formed through upwelling magmas, and (3) ilmenite‐bearing cumulate blocks remained in the upper mantle after the mantle overturn.  相似文献   

16.
Abstract– The nakhlites contain small proportions of Cu‐Fe‐Ni sulfide minerals; we have studied these sulfides in Northwest Africa (NWA) 998, Nakhla, Governador Valadares, and NWA 817 with optical microscopy, scanning electron microscope, and electron microprobe. Modal abundances of magmatic sulfides, as estimated by image analysis on thin section, are uniformly low (0.02 to 0.05 ± 0.03 vol%), i.e., a factor 5 lower than in shergottites. Sulfides occur within the glassy mesostasis, as composite two‐phase Fe‐Ti oxide‐sulfide grains, intimately associated with interstitial grains or locally enclosed in postcumulus melt inclusions (e.g., Governador Valadares) in olivine. They exhibit a uniform low‐Ni monoclinic pyrrhotite composition ± chalcopyrite. There is a gradation of sulfide grain sizes and textures across the nakhlites flow(s): droplets in NWA 817; resorbed blebs in Governador Valadares; more massive, true intercumulus blebs in Nakhla and NWA 998. These nakhlites also show evidence for sulfide weathering. Hot desert finds (e.g., NWA 998 and NWA 817) show a few percent fracture‐filling iron (oxy) hydroxides of likely terrestrial origin. Original sulfides are 50% altered in our NWA 998 section, with iron (oxy) hydroxides at grain boundaries and as complete pseudomorphs. The compositions of unaltered pyrrhotites are homogeneous, close to that of the monoclinic endmember Fe7S8, and are too sulfur‐rich to have been in chemical equilibrium with the late magmatic redox state fixed by the fayalite‐magnetite‐quartz buffer. Therefore, the compositions of the pyrrhotites must have been altered during the later stages of magmatic crystallization, by assimilation of S‐rich regolith and hydrothermal circulation.  相似文献   

17.
It is widely accepted that lunar volcanism started before the emplacement of the mare fills ( b.p.) and lasted for probably more than 3.0 Ga. While the early volcanic activity is relatively easy to understand from a thermal point of view, the late stages of volcanism are harder to explain, because a relatively small body like the Earth's Moon is expected to cool rapidly and any molten layer in the interior should solidify rather quickly. We present several thermal evolution models, in which we varied the boundary conditions at the model surface in order to evaluate the influence on the extent and lifetime of a molten layer in the lunar interior. To investigate the influence of a top insulating layer we used a fully three-dimensional spherical shell convection code for the modelling of the lunar thermal history. In all our models, a partial melt zone formed nearly immediately after the simulation started (early in lunar history), consistent with the identification of lunar cryptomare and early mare basalt volcanism on the Moon. Due to the characteristic thickening of the Moon's lithosphere the melt zone solidified from above. This suggests that the source regions of volcanic rock material proceeded to increasing depth with time. The rapid growth of a massive lithosphere kept the Moon's interior warm and prevented the melt zone from fast freezing. The lifetimes of the melt zones derived from our models are consistent with basalt ages obtained from crater chronology. We conclude that an insulating megaregolith layer is sufficient to prevent the interior from fast cooling, allowing for the thermal regime necessary for the production and eruption of young lava flows in Oceanus Procellarum.  相似文献   

18.
Abstract— Thirteen glasses from Apollo 17 regolith 71501,262 have been chemically analyzed by electron microprobe and isotopically dated with the 40Ar/39Ar dating method. We report here the first isotopic age obtained for the Apollo 17 very low titanium (VLT) volcanic glasses, 3630 ± 40 Ma. Twelve impact glasses that span a wide compositional range have been found to record ages ranging from 102 ± 20 Ma to 3740 ± 50 Ma. The compositions of these impact glasses show that some have been produced by impact events within the Apollo 17 region, whereas others appear to be exotic to the landing site. As the data sets that include compositions and ages of lunar impact glasses increase, the impact history in the Earth‐Moon system will become better constrained.  相似文献   

19.
Northwest Africa (NWA) 8418 is an unusual chondrite whose properties do not exactly match those of any other known chondrite. It has similarities to the CV (Vigarano group), CK (Karoonda group), and CL (Loongana group) chondrites, but its abundance of large calcium-aluminum-rich inclusions (CAIs) and the low NiO content (<0.2 wt%) of its matrix olivine ally it most closely with the CV group. The absence of grossular, monticellite, wollastonite, and sodalite from the alteration products of the CAIs; the magnesium-rich nature of the matrix olivines (Fa38) relative to that of the CV3 chondrites (~Fa50); and the presence of secondary Na-bearing plagioclase and chlorapatite indicate a metamorphic temperature >600 °C. NWA 8418 contains kamacite, taenite, and troilite, and lacks magnetite and pentlandite. We propose that NWA 8418 be reclassified as a reduced CV4 chondrite, which makes it the first CV chondrite of petrologic type 4.  相似文献   

20.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号