首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 182 毫秒
1.
王惠亚  赵立敏  张芳  何丹农 《化学进展》2019,31(9):1251-1262
随着电动汽车对锂离子电池功率要求的不断提高, 高性能锂离子电池逐渐成为了人们研究的热点。隔膜作为锂离子电池的关键部件之一, 发挥着隔离正负极材料以及为锂离子迁移提供通道的作用。此外, 隔膜的热稳定性也直接影响着锂离子电池的安全性能。聚烯烃微孔隔膜由于其出色的化学稳定性、机械强度以及价格低廉而被广泛应用于锂离子电池中。然而, 其热稳定性差以及不易湿润等缺点给高性能锂离子电池的广泛应用带来很大隐患。因此, 本文探讨了聚烯烃微孔隔膜的表面改性, 以此为出发点, 介绍了基于聚合物表面改性的聚烯烃微孔隔膜、基于无机纳米颗粒的聚烯烃微孔隔膜、基于有机-无机复合材料的聚烯烃微孔隔膜的研究进展。在基于无机纳米颗粒的聚烯烃微孔隔膜的介绍中, 本文还对原子层沉积法、化学气相沉积法、物理气相沉积法等先进表面改性方法进行了简单介绍。随后, 从湿法制备、相转化法、呼吸图法、静电纺丝法以及原位聚合法5种方法出发, 对其他聚合物微孔隔膜的研究进展进行了介绍。最后, 本文对将来高性能隔膜材料的研究方向上作出展望, 旨在为高性能锂离子二次电池隔膜材料的研究和应用提供参考。  相似文献   

2.
锂离子电池作为便携式电子产品、新能源汽车、蓄电设备等产品电源备受关注。锂离子电池由正极、负极、隔膜和电解液四部分组成。隔膜虽然不直接参与锂离子电池中的电化学反应,但是隔膜作为锂离子电池的重要组成部分,其性质在很大程度上影响锂离子电池的性能。目前聚烯烃仍是使用最为广泛和商业化最为成功的锂离子电池隔膜材料,但因其不良的电解液浸润性和热稳定性,降低了锂离子电池的电性能和安全性,因此改性成为改善聚烯烃隔膜材料性能和推广应用的重要途径。本文从聚烯烃材料多层膜结构改性、表面涂覆改性和层层自组装改性三方面总结了近五年聚烯烃隔膜改性研究的最新进展。最后,提出增强聚烯烃隔膜的热稳定性和电化学性能仍是未来研究重点,并对新型隔膜材料进行展望。  相似文献   

3.
锂离子电池最常见的安全性问题主要出现在电解液和隔膜.热失控是导致锂离子电池产生安全事故的主要原因.改变电解液组分、增加电解液组分、引入阻燃添加剂等措施,能够有效缓解并抑制热效应,降低可燃性.改性聚烯烃隔膜是提高隔膜热稳定性的简单方法,使用高熔点的聚合物或无机材料对隔膜进行修饰,其本质类似于给隔膜穿上一层“外骨骼”,用来抵御热冲击和机械冲击.隔膜在保证具备基本功能的同时,还要更加环保,逐步转向可持续的生物质材料.本文针对近年来锂离子电池的安全保护措施进行了综述,主要包括近几年内部保护措施和外部保护措施的相关研究和探索方面的成果.详细介绍了最近报道的不易燃电解液、阻燃添加剂、隔膜、正极材料、限流设备和电池管理系统的作用机理和研究进展,并展望了未来锂离子电池安全性研究的发展方向.  相似文献   

4.
随着锂离子电池单体容量及模块容量的提高,电池的安全性问题愈发严峻.传统的聚烯烃隔膜尺寸耐热性能较差,因而迫切需要开发高安全性的锂离子电池隔膜.纤维素是一种热固性高分子材料,具有耐热性能优异的优点,而且其天然产量大,成本低,易于抄纸加工,特别适用于制造尺寸热稳定性好的新型锂离子动力电池隔膜.本文主要综述了近年来纤维素基锂离子电池隔膜的研究进展,并对该领域的未来应用和挑战进行了展望.  相似文献   

5.
逐年加剧的能源短缺以及日益严重的环境污染问题使得发展电动汽车日益迫切.电动汽车安全问题对动力锂离子电池在大功率输出和高安全性能等方面提出了更高的要求.隔膜电解质体系是制约动力锂离子电池快速发展的重要瓶颈之一,因此,开发高性能的隔膜对提高动力锂离子电池的综合性能至关重要.本文综述了近年来隔膜材料的种类、制备工艺、性能以及本课题组在高安全性阻燃动力锂离子电池隔膜方面的研究进展,并对未来电池隔膜的发展方向进行了预期和展望.  相似文献   

6.
王洪  杨驰  谢文峰  余刚 《应用化学》2014,31(7):757-762
为改善聚烯烃微孔膜的耐热安全性,研究了用于锂离子电池的陶瓷聚烯烃复合隔膜ZrO2/SiO2/PP(聚丙烯)。 复合膜具有高度多孔性和良好液体电解液湿润性。 由于高的毛细吸附作用,通过吸附液态电解液,膜很易传导锂离子。 膜中ZrO2/SiO2的两性特征,将电解液中的酸性HF(氟化氢)消耗掉,而HF作为现在锂离子电池所用电解液中的杂质是不可避免的。 复合膜作为隔膜制备的碳/正极材料锂离子电池不仅具有优良的容量保持性、高温安全性,也显示良好的倍率放电性。  相似文献   

7.
作为锂离子电池重要组分,隔膜由多孔聚烯烃高分子材料组成;电解质体系由有机碳酸酯和六氟磷酸锂混合组成,虽具有高离子电导率,但因液态碳酸酯的易燃特性给锂离子电池带来了安全隐患。利用能够将液态电解质体系凝胶化的聚合物制备得到的凝胶聚合物隔膜,结合了液态电解质体系高电导率和固态电解质高安全性的优点。凝胶聚合物隔膜的研究从简单微孔凝胶聚合物隔膜开始,经历了引入少量纳米无机颗粒的掺杂凝胶聚合物隔膜,到引入大量纳米颗粒的凝胶陶瓷隔膜的发展历程。本文详细介绍这三种类型凝胶聚合物隔膜的物理化学特性,最后展望凝胶聚合物隔膜的发展趋势。  相似文献   

8.
随着锂离子电池在动力和规模化储能等新能源领域应用的不断拓展,具有特殊功能且满足特定使用需求隔膜的设计准则、制备/改性方法及表征技术亟需系统深入研究。针对锂离子电池高性能和高安全性的要求,研究人员已通过结构设计和表面化学改性等策略优化了隔膜的本征特性,并通过系列表征技术探讨了隔膜的功能化改性对锂离子电池电化学性能的影响。基于以上背景,本文从离子传输、枝晶形核与生长、及安全性能三个方面详细探讨了隔膜对电池性能影响的关键因素及其改性方法,并系统总结了隔膜结构、物化特性、力学性能、热学性能以及电化学性能的表征技术,以期为功能隔膜的合理设计,从而优化锂离子电池性能提供理论和实践指导。同时,本文对隔膜未来的进一步研究和发展提出了展望。  相似文献   

9.
为了改善锂电隔膜的亲液性和耐高温性,以醋酸纤维素为成膜材料,利用相转化法制备了新型锂电隔膜,通过形貌和孔道结构表征、亲液性能和耐热性能测试对醋酸纤维素隔膜的基本性能进行研究,并将该隔膜装配成锂离子电池进行充放电性能测试. 结果表明,醋酸纤维素隔膜具有均匀的微孔结构,孔隙率达到65%,约为传统聚烯烃隔膜的1.5倍;纤维素材料的良好亲液性和高孔隙率结构改善了隔膜的吸液性能,其吸液率达到285%;该隔膜在150 oC、30 min的热处理条件下未发生明显的热收缩. 鉴于上述优点,相对于市售PE隔膜,醋酸纤维素隔膜所装配锂离子电池显示出更优的循环性能和倍率性能.  相似文献   

10.
随着科学技术的日新月异,作为绿色电池之一的锂离子电池已成为储能最重要的途径,亦是移动信息和日常生活中不可或缺的产品.锂离子电池隔膜是锂离子电池的重要组成部分,隔膜在正负电极之间起物理隔离作用,可以有效防止电路短路,同时隔膜允许锂离子从中通过,使电池充放电功能得以实现.因此,锂离子电池隔膜对锂电池性能和安全性有着重要的影响.为了了解锂离子电池隔膜技术在世界范围及国内的分布及发展趋势,通过德温特(DII)数据库以及国家知识产权局专利检索与服务系统分别对近十年(2005~2014年)国际范围内及国内专利情况进行了检索和统计,并对其知识产权的发展趋势进行分析和预测.  相似文献   

11.
Secondary Li?ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li?ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li?ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li?ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials.  相似文献   

12.
将环状碳酸酯基团引入到聚甲基丙烯酸甲酯(PMMA)侧链上, 制备了聚(2,3-环碳酸甘油酯)甲基丙烯酸酯(PDOMMA), 并用其修饰锂离子电池聚乙烯隔膜. 通过热重分析、 差示扫描量热分析及接触角和吸液率测试等研究了PDOMMA的热稳定性及其修饰的聚乙烯隔膜对电解液的浸润性和吸液率的影响, 并通过恒流充放电、 交流阻抗、 倍率性能测试及扫描电子显微镜观测等研究了修饰隔膜对锂离子电池性能的影响. 结果表明, 与未修饰隔膜相比, 修饰隔膜对电解液浸润性更优异(20 s内便完全浸润), 吸液率更高(440%), 电池循环性能更好(放电比容量提高了12.3%).  相似文献   

13.
A potential‐sensitive separator is prepared simply by incorporating a redox‐active poly(3‐butylthiophene) (P3BT) into the micropores of a commercial porous polyolefin film and tested for overcharge protection of LiFePO4/Li4Ti5O12 lithium‐ion batteries. The experimental results demonstrate that owing to the reversible p‐doping and dedoping of the redox‐active P3BT polymer embedded in the separator with the changes of the cathode potential from an overcharge state to a normal operating state, this type of separator can reversibly switch between electronically insulating state and conductive state to maintain the charge voltage of LiFePO4/Li4Ti5O12 cells at a safety value of ≤2.4 V, and thus protecting the cell from voltage runaway. As this type of the separators works reversibly and has no negative impact on the battery performances, it can be used as an internal and self‐protecting mechanism for commercial lithium‐ion batteries and other rechargeable batteries. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1487–1493  相似文献   

14.
A sponge-like poly(vinylidene fluoride)/high density polyethylene (PVDF/HDPE) separator exhibiting high ionic conductivity and transference number of Li+ ion for lithium ion battery has been prepared by non-solvent induced phase separation (NIPS) method. HDPE fillers with size smaller than 250 nm are prepared with moderated reverse phase emulsion. The ion conductivity of PVDF/HDPE separator saturated with 1.0 M LiPF6–ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1, v/v/v) can be up to 2.54 mS cm?1 at 25 °C, which is higher than that of pristine PVDF separator (1.85 mS cm?1). The transference number of lithium ion with PVDF/HDPE separator is 0.495, better than that with commercial PP separator (0.33) and pristine PVDF separator (0.27). What is more, LiCoO2/Li cells assembled with PVDF/HDPE separator show good C-rate and cycling performance which indicates great potential in serving as a good candidate of polymer separator for lithium ion batteries application.  相似文献   

15.
锂离子电池在便携式储能器件及电动汽车领域得到了广泛应用,然而频繁发生的电池起火爆炸事故,使热失控和热安全问题备受人们关注,目前已有多篇综述报道了缓解锂离子电池热失控的措施。相比于已经接近理论比能极限的锂离子电池,金属锂负极具有更高的比容量、更低的电势和高反应活性,但是不可控的锂枝晶生长,使得金属锂电池的热失控问题更为复杂和严重。针对金属锂电池的热失控问题,本文首先介绍了热失控的诱因及基本过程和阶段,其次从材料层面综述了提高电池热安全性的多种策略,包括使用阻燃性电解质、离子液体电解质、高浓电解质和局域高浓电解质等不易燃液态电解质体系,开发高热稳定性隔膜、热响应隔膜、阻燃性隔膜和具有枝晶检测预警与枝晶消除功能的新型智能隔膜,以及研究热响应聚合物电解质,最后对金属锂电池热失控在未来的进一步研究进行了展望。  相似文献   

16.
电极/电解液界面不稳定是高压锂离子电池发展的主要瓶颈.提高界面稳定性是高压锂离子电池得以应用的前提.本文综述了碳酸酯基电解液氧化分解反应机理、新型耐高压溶剂体系和新型成膜添加剂实验与理论的研究进展.  相似文献   

17.
Polymer electrolytes that have been developed for battery applications fall into two general classes, neat or “pure” polymer and plasticized or gel in which the polymer is combined with a conducting organic electrolyte. The polyethylene oxide (PEO) and its modifications are typical of the “pure” polymer electrolytes. They have poor conductivity at room temperatures, but at elevated temperatures, their conductivity is of the order of 10−3 to 10−4 S/cm. The PEO electrolytes have found application in the high temperature (>60°C) lithium metal anode battery systems. The high temperature necessary for good operation makes them unsuitable for use in small consumer appliances. The polymer electrolyte battery development activities have resulted in several high performance battery systems now just entering the market. Not all of the developments have resulted in commercial cell production. The commercialization activities of high performance lithium‐ion (Li‐Ion) batteries have been based on two general plastic polymer systems: poly‐vinylidene difluoride‐hexafluoropropylene copolymer (PVdF‐HFP) and polyacrylates. The polymer cells are expected to have advantages in manufacturing, flexibility, thin cell formats and lightweight packaging. Important parameters in PVdF gel electrolyte performance include the electrolyte type (combination of organic carbonates), temperature, and HFP copolymer content. Li‐Ion coin cells fabricated with a polyolefin separator with either liquid electrolyte or with the PVdF gel polymer electrolyte have equivalent performance.  相似文献   

18.
三元锂离子电池容量衰减机理研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
三元锂离子电池主要是指使用镍钴锰酸锂(NCM)或镍钴铝酸锂(NCA)作为正极材料的锂离子电池,三元锂离子电池广泛应用于电动汽车、3C电子产品、储能等领域。然而,三元锂离子电池的循环寿命已成为其进一步发展的最大障碍,因此了解三元锂离子电池的容量衰退机理具有重要意义。三元锂离子电池的衰退机理主要包括五个方面:晶体结构的改变和相变、活性材料的损失、电解质的分解和消耗、可脱嵌锂离子的损耗以及固体电解质界面的形成。本文总结了近年来相关方面的研究进展,以期更全面地总结三元锂离子电池的容量衰减机理,并对三元锂离子电池的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号