首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
The phenotypic defects of three temperature-sensitive (ts) mutants of vaccinia virus, the ts mutations of which were mapped to the gene for one of the high-molecular-weight subunits of the virion-associated DNA-dependent RNA polymerase, were characterized. Because the virion RNA polymerase is required for the initiation of the viral replication cycle, it has been predicted that this type of mutant is defective in viral DNA replication and the synthesis of early viral proteins at the nonpermissive temperature. However, all three mutants synthesized both DNA and early proteins, and two of the three synthesized late proteins as well. RNA synthesis in vitro by permeabilized mutant virions was not more ts than that by the wild type. Furthermore, only one of three RNA polymerase activities that was partially purified from virions assembled at the permissive temperature displayed altered biochemical properties in vitro that could be correlated with its ts mutation: the ts13 activity had reduced specific activity, increased temperature sensitivity, and increased thermolability under a variety of preincubation conditions. Although the partially purified polymerase activity of a second mutant, ts72, was also more thermolabile than the wild-type activity, the thermolability was shown to be the result of a second mutation within the RNA polymerase gene. These results suggest that the defects in these mutants affect the assembly of newly synthesized polymerase subunits into active enzyme or the incorporation of RNA polymerase into maturing virions; once synthesized at the permissive temperature, the mutant polymerases are able to function in the initiation of subsequent rounds of infection at the nonpermissive temperature.  相似文献   

4.
The generation of influenza A virus defective interfering (DI) particles was studied by using an NS2 mutant which produces, in a single cycle of virus replication, a large amount of DI particles lacking the PA polymerase gene. The decrease in PA gene replication has been shown to occur primarily at the cRNA synthesis step, with preferential amplification of PA DI RNA species present in a marginal amount in the virus stock. In addition, at the assembly step the PA DI RNAs were preferentially incorporated into virions, resulting in selective reduction in the packaging of the PA gene into virions. Similarly, in cells dually infected with the NS2 mutant and wild-type viruses, packaging of the wild-type PA gene was also greatly suppressed. In contrast, incorporation of other RNA segments, i.e., the PB2 and NS genes, was not affected, suggesting that the PA DI RNAs competed only with the PA gene in a segment-specific manner. Experiments involving rescue of recombinant chloramphenicol acetyltransferase (CAT) RNA flanked by the noncoding regions of the PA (PA/CAT RNA) and PB2 (PB2/CAT RNA) genes into viral particles showed that only PA/CAT RNA was not rescued by infection with the NS2 mutant virus containing the PA DI RNAs. However, recombinant PA/CAT RNA in which either the 3' or 5' noncoding region was replaced with that of the PB2 gene was rescued by the NS2 mutant. These results suggest that the noncoding regions of the PA gene are responsible for the competition with PA DI RNA species at the virus assembly step and that coexistence of the both noncoding regions would be a prerequisite for this phenomenon. Decreased packaging of the progenitor RNA by the DI RNA, in addition to the suppression of cRNA synthesis, is likely involved in the production of DI particles.  相似文献   

5.
6.
7.
S González  J Ortín 《The EMBO journal》1999,18(13):3767-3775
The influenza virus RNA polymerase is a heterotrimer comprising the PB1, PB2 and PA subunits. PB1 is the core of the complex and accounts for the polymerase activity. We have studied the interaction of PB1 with model cRNA template by in vitro binding and Northwestern analyses. The binding to model cRNA was specific and showed an apparent Kd of approximately 7x10(-8) M. In contrast to the interaction with vRNA, PB1 was able to bind equally the 5' and 3' arm of the cRNA panhandle. The N-terminal 139 amino acids of PB1 and sequences between positions 267 and 493 proved positive for binding to cRNA, whereas the interaction with vRNA template previously was mapped to the N- and C-terminal regions. Competition experiments using the 5' and 3' arms of either the vRNA or cRNA panhandle indicated that the N-terminal binding site is shared by both templates. The data indicate that the PB1 RNA-binding sites are constituted by: (i) residues located at the N-terminus (probably common for vRNA and cRNA binding) and, either (ii) residues from the central part of PB1 (for cRNA) or (iii) residues from the C-terminal region of PB1 (for vRNA), and suggest that PB1 undergoes a conformational change upon binding to cRNA versus vRNA templates.  相似文献   

8.
Sun D  Luthra P  Xu P  Yoon H  He B 《Journal of virology》2011,85(16):8376-8385
The viral RNA-dependent RNA polymerase (vRdRp) of paramyxovirus consists of the large (L) protein and the phosphoprotein (P). P is heavily phosphorylated, and it is thought that the phosphorylation of P plays a role in regulating viral RNA synthesis. However, no phosphorylation site within the P protein in paramyxovirus has been identified as playing a positive role in viral RNA synthesis in virus infection. Using mass spectrometry analysis, the threonine residue at position 286 of P of parainfluenza virus 5 (PIV5) was found phosphorylated. Mutation of T286 to alanine (T286A), aspartic acid (T286D), or glutamic acid (T286E) reduced minigenome activity. Recombinant virus containing a mutation at the T286 position (rPIV5-P-T286A) grew slower than wild-type virus; viral mRNA synthesis and protein expression of rPIV5-P-T286A were delayed. Biochemical studies showed that the binding of NP or L protein with the P mutants or tetramer formation by the mutant P proteins was unaltered from that for wild-type P. While we failed to rescue rPIV5-P-T286E virus, several revertant viruses were obtained. All non-wild-type revertants had mutations at T286 and showed defects in both minigenome activity and viral growth. This is the first time that a phosphorylation site within the P protein in paramyxovirus has been found to play a positive role in viral mRNA synthesis and virus growth.  相似文献   

9.
Initial attempts to clone the matrix (M) gene of vesicular stomatitis virus (VSV) in a vaccinia virus expression vector failed, apparently because the expressed M protein, and particularly a carboxy-terminus-distal two-thirds fragment, was lethal for the virus recombinant. Therefore, a transient eucaryotic expression system was used in which a cDNA clone of the VSV M protein mRNA was inserted into a region of plasmid pTF7 flanked by the promoter and terminator sequences for the T7 bacteriophage RNA polymerase. When CV-1 cells infected with recombinant vaccinia virus vTF1-6,2 expressing the T7 RNA polymerase were transfected with pTF7-M3, the cells produced considerable amounts of M protein reactive by Western blot (immunoblot) analysis with monoclonal antibodies directed to VSV M protein. Evidence for biological activity of the plasmid-expressed wild-type M protein was provided by marker rescue of the M gene temperature-sensitive mutant tsO23(III) at the restrictive temperature. Somewhat higher levels of M protein expression were obtained in CV-1 cells coinfected with a vaccinia virus-M gene recombinant under control of the T7 polymerase promoter along with T7 polymerase-expressing vaccinia virus vTF1-6,2.  相似文献   

10.
The influenza A virus NEP (NS2) protein is an structural component of the viral particle. To investigate whether this protein has an effect on viral RNA synthesis, we examined the expression of an influenza A virus-like chloramphenicol acetyltransferase (CAT) RNA in cells synthesizing the four influenza A virus core proteins (nucleoprotein, PB1, PB2, and PA) and NEP from recombinant plasmids. Influenza A virus NEP inhibited drastically, and in a dose-dependent manner, the level of CAT expression mediated by the recombinant influenza A virus polymerase. This inhibitory effect was not observed in an analogous artificial system in which expression of a synthetic CAT RNA is mediated by the core proteins of an influenza B virus. This result ruled out the possibility that inhibition of reporter gene expression was due to a general toxic effect induced by NEP. Analysis of the virus-specific RNA species that accumulated in cells expressing the type A recombinant core proteins and NEP showed that there was an important reduction in the levels of minireplicon-derived vRNA, cRNA, and mRNA molecules. Taken together, the results obtained suggest a regulatory role for NEP during virus-specific RNA synthesis, and this finding is discussed regarding the biological implications for the virus life cycle.  相似文献   

11.
M M Bendig  T Thomas  W R Folk 《Cell》1980,20(2):401-409
In polyoma virus the origin of replication, the 5′ ends of early mRNAs, and the initiation codon for early protein synthesis map within an approximately 200 bp region of the genome. We have previously reported the isolation and partial characterization of viable mutants of polyoma virus with deletions in this important regulatory region of the genome. Three of the mutants with large deletions, one of which had significantly altered growth properties, have been further characterized with respect to their nucleotide sequence alterations and their levels of viral DNA replication and of early protein synthesis. The nearly coincident deletions in mutants 17 and 2–19 reduce the capacity of these viruses to replicate, even in the presence of a coinfecting virus; thus they help define one boundary of the origin of DNA replication. The deletion in mutant 75 appears to remove sequences that are essential for efficient expression of early genes, but has little or no effect upon DNA replication. Its defect is complemented in trans by wild-type virus. All three mutants eliminate sequences which are candidates for RNA polymerase and ribosome binding sites near the initiation codon for early proteins.  相似文献   

12.
13.
14.
15.
16.
The Sendai virus P protein is an essential component of the viral RNA polymerase (P-L complex) required for RNA synthesis. To identify amino acids important for P-L binding, site-directed mutagenesis of the P gene changed 17 charged amino acids, singly or in groups, and two serines to alanine within the L binding domain from amino acids 408 to 479. Each of the 10 mutants was wild type for P-L and P-P protein interactions and for binding of the P-L complex to the nucleocapsid template, yet six showed a significant inhibition of in vitro mRNA and leader RNA synthesis. To determine if binding was instead hydrophobic in nature, five conserved hydrophobic amino acids in this region were also mutated. Each of these P mutants also retained the ability to bind to L, to itself, and to the template, but two gave a severe decrease in mRNA and leader RNA synthesis. Since all of the mutants still bound L, the data suggest that L binding occurs on a surface of P with a complex tertiary structure. Wild-type biological activity could be restored for defective polymerase complexes containing two P mutants by the addition of wild-type P protein alone, while the activity of two others could not be rescued. Gradient sedimentation analyses showed that rescue was not due to exchange of the wild-type and mutant P proteins within the P-L complex. Mutants which gave a defective RNA synthesis phenotype and could not be rescued by P establish an as-yet-unknown role for P within the polymerase complex, while the mutants which could be rescued define regions required for a P protein function independent of polymerase function.  相似文献   

17.
T S Huang  P Palese    M Krystal 《Journal of virology》1990,64(11):5669-5673
An artificial vaccinia virus vector-driven replication system for influenza virus RNA has been developed. In this system, a synthetic NS-like gene is replicated and expressed by influenza virus proteins supplied through infection with vaccinia virus recombinant vectors. The minimum subset of influenza virus proteins needed for specific replication and expression of the viral ribonucleoprotein was found to be the three polymerase proteins (PB1, PB2, and PA) and the nucleoprotein.  相似文献   

18.
19.
We have isolated a yeast conditional mutant which rapidly ceases synthesis of mRNA when subjected to the nonpermissive temperature. This mutant (rpb1-1) was constructed by replacing the wild-type chromosomal copy of the gene encoding the largest subunit of RNA polymerase II with one mutagenized in vitro. The rapid cessation of mRNA synthesis in vivo and the lack of RNA polymerase II activity in crude extracts indicate that the mutant possesses a functionally defective, rather than an assembly-defective, RNA polymerase II. The shutdown in mRNA synthesis in the rpb1-1 mutant has pleiotropic effects on the synthesis of other RNAs and on the heat shock response. This mutant provides direct evidence that the RPB1 protein has a functional role in mRNA synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号