首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The propagation of harmonic elastic wave in an infinite three-dimensional matrix containing an interacting low-rigidity disk-shaped inclusion and a crack. The problem is reduced to a system of boundary integral equations for functions that characterize jumps of displacements on the inclusion and crack. The unknown functions are determined by numerical solution of the system of boundary integral equations. For the symmetric problem, graphs are given of the dynamic stress intensity factors in the vicinity of the circular inclusion and the crack on the wavenumber for different distances between them and different compliance parameters of the inclusion.  相似文献   

2.
A novel procedure for solving three-dimensional problems for elastic layer weakened by through-thickness tunnel cracks has been developed and is presented in this paper. This procedure reduces the given boundary value problem to an infinite system of one-dimensional singular integral equations and is based on a system of homogeneous solutions for a layer. Integral representations of single- and double-layer potentials are used for metaharmonic and harmonic functions entering in the singular integral equations. These representations provide a continuous extendibility of the stress vector while allowing a jump in the displacement vector in the transition through the cut.Expanding the potential and biharmonic solutions in the Fourier series over the thickness coordinate yields the integral representations of the displacement vector and stress tensor. The problem of reducing a denumerable set of the integral equations of the given boundary value problem to one-to-one correspondence with the set of unknown densities appearing in the Fourier’s coefficient representations has been settled efficiently. Numerical investigations show a rapid convergence of the proposed reduction procedure as applied to the solution of the infinite system of one-dimensional integral equations. Numerical examples illustrate the proposed method and demonstrate its advantages.  相似文献   

3.
IntroductionWiththedevelopmentofparticleandfiberreinforcedcomposites,theinclusion_crackinteractionproblemisbecominganimportantfieldbeingstudied .Andasamodel,itisalsousedtostudytheeffectsofmaterialdefectsonthestrengthandfractureofengineeringstructure.TheinterationbetweencircularinclusionandcrackwasstudiedinRefs.[1 -6 ] ;InRefs.[7-1 2 ] ,theinterationbetweenlineinclusionandcrackswasdiscussed ;TheinterationbetweenellipticalinclusionandcrackwasstudiedinRefs.[1 3,1 4] .However,withthedevelopmento…  相似文献   

4.
应用波动时域超奇异积分法将P波、S波和磁电热弹多场耦合作用下同震断层任意形状三维裂纹扩展问题转化为求解以广义位移间断率为未知函数的超奇异积分方程组问题;定义了广义应力强度因子,得到裂纹前沿广义奇异应力增量解析表达式;应用波动时域有限部积分概念及体积力法,为超奇异积分方程组建立了数值求解方法,编制了FORTRAN程序,以三维矩形裂纹扩展问题为例,通过典型算例,研究了广义应力强度因子随裂纹位置变化规律;分析了同震断层裂纹扩展中力、磁、电场辐射规律.   相似文献   

5.
The paper presents the solution of the problem of determining the stress state in an elastic matrix containing a rigid inclusion of the shape of a thin cylindrical shell. It is assumed that harmonic vibrations occur in the matrix under the conditions of axial symmetry (the symmetry axis is the inclusion axis) and the conditions of full adhesion between the inclusion and the matrix are satisfied. The vibrations are caused by the propagation of a plane wave whose front is perpendicular to the inclusion axis. The solution method is based on representing the displacements in the matrix as discontinuous solutions of the equations of axisymmetric oscillations of an elastic medium with unknown stress jumps on the inclusion surface. The realization of the boundary conditions for these jumps leads to a system of integral equations. Its solution is constructed numerically by the mechanical quadrature method with the use of special quadrature formulas for specific integrals. It is numerically investigated how the ratio of the inclusion geometric dimensions and the propagating wave frequency affect the stress concentration near the inclusion.  相似文献   

6.
IntroductionCompositematerialconsistingofapiezoelectricphaseandapiezomagneticphasehasdrawnsignificantinterestinrecentyears,duetotherapiddevelopmentinadaptivematerialsystems .Itshowsaremarkablylargemagnetoelectriccoefficient,thecouplingcoefficientbetweenst…  相似文献   

7.
In this paper, the behavior of two collinear cracks in magneto-electro-elastic composite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of displacements across the crack surfaces. In solving the triple integral equations, the unknown variable is expanded in a series of Jacobi polynomials. Numerical solutions are obtained. It is shown that the stress field is independent of the electric field and the magnetic flux.  相似文献   

8.
We solve the problem of determining the stress state near a thin elastic inclusion in the form of a strip of finite width in an unbounded elastic body (matrix) with plane nonstationary waves propagating through it and with the forces exerted by the ambient medium taken into account. We assume that the matrix is in the plane strain state, and the smooth contact conditions are realized on both sides of the inclusion. The method for solving this problem consists in using the integral Laplace transform with respect to time and in representing the stress and displacement images in terms of the discontinuous solution of Lamé equations in the case of plane strain. As a result, the initial problem is reduced to a system of singular integral equations for the transforms of the unknown stress and displacement jumps. To invert the Laplace transform, we use a numerical method based on replacing the Mellin integral by the Fourier series. As a result, we obtain approximate formulas for calculating the stress intensity factors (SIF) for the inclusion, which are used to study the SIF time-dependence and its influence on the values of the inclusion rigidity. We also studied the possibility of considering the inclusions of higher rigidity as absolutely rigid inclusions.  相似文献   

9.
Direct and inverse problems of forced antiplane vibrations of a transverse inhomogeneous elastic layer are considered. The mechanical characteristics of the layer (density and shear modulus) are considered to be functions of the transverse coordinate. A method for solving the direct problem, based on using the integral Fourier transform and solving the boundary problem by the shooting method, is proposed. The inverse problem of determining the distributions of the mechanical parameters based on the known information on the wave field on some part of the upper surface is considered. Iterative sequences of integral equations are constructed. Results of numerical experiments and recommendations on the optimal choice of the vibration frequency and the interval, on which the displacements are determined, are given.  相似文献   

10.
I. INTRODUCTION Owing to the intrinsic coupling characteristics between electric and elastic behaviors, piezoelectricmaterials have been used widely in technology such as transducers, actuators, sensors, etc. Studieson electroelastic problems of a piezo…  相似文献   

11.
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM),singularities in the local boundary integrals need to be treated specially. In the current paper,local integral equations are adopted for the nodes inside the domain trod moving least square approximation (MLSA) for the nodes on the global boundary,thus singularities will not occur in the new al- gorithm.At the same time,approximation errors of boundary integrals are reduced significantly.As applications and numerical tests,Laplace equation and Helmholtz equa- tion problems are considered and excellent numerical results are obtained.Furthermore, when solving the Hehnholtz problems,the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions.Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.  相似文献   

12.
We consider the problem on the motion of an isotropic elastic body occupying the half-space z ≥ 0 on whose boundary, along the half-plane x ≥ 0, the horizontal components of displacement are given, while the remaining part of the boundary is stress-free. We seek the solution by the method of integral Laplace transforms with respect to time t and Fourier transforms with respect to the coordinates x, y; the problem is reduced to a system of Wiener-Hopf equations, which can be solved by the methods of singular-integral equations and circulants. We invert the integral transforms and reduce the solution to the Smirnov-Sobolev form. We calculate the tangential stress intensity coefficients near the boundary z = 0, x = 0, |y| < ∞ of the half-plane. The circulant method for solving the Wiener-Hopf system was proposed in [1]. A static problem similar to that considered in the present paper was solved earlier. The Hilbert problem was reduced to a system of Fredholm integral equations in [2]. In the present paper, we solve the above problem by reducing the solution to quadratures and a quasiregular system of Fredholm integral equations. We give a numerical solution of the Fredholm equations and calculate the integrals for the tangential stress intensity coefficients.  相似文献   

13.
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular, which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies. The project supported by the National Natural Science Foundation of China (19872002) and Climbing Foundation of Northern Jiaotong University  相似文献   

14.
A closed system of differential equations for stresses and boundary and integral equilibrium and compatibility conditions for the components of the stress tensor are derived in solving a three-dimensional elastic problem for an unbounded layer. These equations are proposed to integrate directly.  相似文献   

15.
An exact solution of a four part mixed boundary value problem representing a three colinear crack system connected with specified crack opening displacements between the cracks is obtained. The three cracks thus become one with pressure and/or opening displacement prescribed on the crack face. From considerations of dual symmetry and a formulation based on Papkovich-Neuber harmonic functions, the boundary value problem is reduced to solving a quadruple set of integral equations. An exact solution of these equations is derived using a modified finite Hilbert transform technique. The closed form results for the stress distributions and the crack-tip stress intensity factors are presented. Limiting cases of the solution yield results which agree with well known solutions.  相似文献   

16.
Summary This paper deals with the stress concentration problem of an ellipsoidal inclusion of revolution in a semi-infinite body under biaxial tension. The problem is formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknowns are densities of body forces distributed in the r- and z-directions in semi-infinite bodies having the same elastic constants as the ones of the matrix and inclusion. In order to satisfy the boundary conditions along the ellipsoidal boundary, four fundamental density functions proposed in [24, 25] are used. The body-force densities are approximated by a linear combination of fundamental density functions and polynomials. The present method is found to yield rapidly converging numerical results for stress distribution along the boundaries even when the inclusion is very close to the free boundary. The effect of the free surface on the stress concentration factor is discussed with varying the distance from the surface, the shape ratio and the elastic modulus ratio. The present results are compared with the ones of an ellipsoidal cavity in a semi-infinite body.accepted for publication 11 November 2003  相似文献   

17.
The vector basis functions, necessary for solving two-dimensional inclusion problems in an elastic solid under time independent conditions by means of the null field approach (T-matrix method), are obtained as a zero frequency limit of the corresponding basis functions commonly used in elastodynamics. The expansion of the fields appearing in the surface integral representation of the static displacement can thus be achieved, leading to the T-matrix equations of 2d-elastostatics. We specialize the problem to the simple boundary condition case of a single cavity and develop the analytical expressions as much as possible before numerical implementation. A numerical test for the ellipse and some examples for the superellipse, with applied static pressure or shear stress at infinity, are given.  相似文献   

18.
Using Green’s functions, the extended general displacement solutions of a three-dimensional crack problem in anisotropic electro-magneto-elastic (EME) bimaterials under extended loads are analyzed by the boundary element method. Then, the crack problem is reduced to solving a set of hypersingular integral equations (HIE) coupled with boundary integral equations. The singularity of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of HIE, and the exact analytical solutions of the extended singular stresses and extended stress intensity factors (SIFs) near the crack front in anisotropic EME bimaterials are given. Also, the numerical method of the HIE for a rectangular crack subjected to extended loads is put forward with the extended crack opening dislocation approximated by the product of basic density functions and polynomials. At last, numerical solutions of the extended SIFs of some examples are obtained.  相似文献   

19.
Closed form solution of quadruple integral equations involving inverse Mellin transforms has been obtained. The solution of quadruple integral equations is used in solving a two dimensional four-part mixed boundary value contact problem for an elastic wedge-shaped region as an application. Closed form expression for shear stress has been obtained. Finally, numerical results for shear stress are obtained and shown graphically.  相似文献   

20.
The boundary integral equation method is developed to study three-dimensional asymptotic singular stress fields at vertices of a pyramidal notch or inclusion in an isotropic elastic space. Two-dimensional boundary integral equations are used for the infinite body with pyramidal notches and inclusions when either stresses or displacements are specified on its surface. Applying the Mellin integral transformation reduces the problem to one-dimensional singular integral equations over a closed, piece-wise smooth line. Using quadrature formulas for regular and singular integrals with Hilbert and logarithmic kernels, these integral equations are reduced to a homogeneous system of linear algebraic equations. Setting its determinant to zero provides a characteristic equation for the determination of the stress singularity power. Numerical results are obtained and compared against known eigenvalues from the literature for an infinite region with a conical notch or inclusion, for a Fichera vertex, and for a half-space with a wedge-shaped notch or inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号