首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
一类对称函数不等式的加细和推广   总被引:7,自引:1,他引:7  
利用控制不等式理论加细和推广了一类对称函数不等式,并给出一个几何应用。  相似文献   

2.
文 [1 ]在函数的凸性理论中 ,给出了一个重要的结论 :设 f ( x)、p( x)为 I上的可积函数 ,而 m≤ f ( x)≤ M,p( x)≥ 0 ,∫Ip( x) dx >0 ,则随连续函数Φ( t) ( m≤ t≤ M)之为下凸或上凸而相应地有Φ∫Ip( x) f ( x) dx∫Ip( x) dx≤或≥∫Ip( x) f ( x) dx∫Ip( x) dx(即 Jensen不等式 )  为证明其反向不等式 ,引入以下记号 ,并引入严格凸函数的一个几何性质。记 I =[a,b];∫I=∫ba;A( f ( x) ) =∫Ip( x) f ( x) dx∫Ip( x) dx为 f ( x)的加权平均 ,p( x)≥ 0 ,∫Ip( x) dx >0 ,x∈ I。设Φ( x) >0 ,Φ″( x) >0 ,x∈ I,则Φ( …  相似文献   

3.
In this article,we show that the generalized logarithmic mean is strictly Schurconvex function for p>2 and strictly Schur-concave function for P<2 on R2+.And then we give a refinement of an inequality for the generalized logarithmic mean inequality using a simple majoricotion relation of the vector.  相似文献   

4.
引入多个参数,利用正割函数的有理分式展开形式,建立了一个最佳常数因子与正割函数的偶数阶导数有关的,并定义在R×R上的Hilbert型积分不等式及其等价形式.特别地,赋予参数不同的数值,文末还建立了一些特殊的Hilbert型不等式.  相似文献   

5.
对文[1]中给出的两个三角形不等式进行研究,通过加细,得到了串联起这两个不等式的一个不等式“链”.  相似文献   

6.
完善调和凸函数的基本性质,并利用两个函数对调和凸函数的Hermite-Hadamard型不等式进行加细.  相似文献   

7.
关于凸函数的一个控制不等式   总被引:4,自引:0,他引:4  
关于凸函数的一个控制不等式续铁权(青岛教育学院数学系266071)设f(x)在[a,b]上定义,0<t<1,若称f(x)是[a,b]上的凸函数,若当时严格不等式成立,称f(x)是严格凸函数.若不等式反向,称f(x)是凹函数和严格凹函数.本文研究凸函数...  相似文献   

8.
通过新引入若干个参数,构建了一个在第一象限内定义的齐次核函数,由此建立了一个常数因子最佳的Hilbert型积分不等式.并且可以证明这一新建立的结果是一个经典的Hilbert型不等式的推广.此外,借助余切函数的有理分式展开,给出了最佳常数因子的简洁表达.最后,通过对参数赋予不同数值,文末给出了一些有趣的推论.  相似文献   

9.
10.
一个不等式的推广   总被引:1,自引:0,他引:1  
  相似文献   

11.
The linear inequality method is an algorithm for discrete Chebyshev approximation by generalized rationals. Stability of the method with respect to uniform convergence is studied. Analytically, the method appears superior to all others in reliability.  相似文献   

12.
In this article, by means of the theory of majorization, Adamovic's inequality is extended to the cases of the general elementary symmetric functions and its duals, and the refined and reversed forms are also given. As applications, some new inequalities for simplex are established.  相似文献   

13.
14.
15.
Muirhead’s majorization inequality was extended by Rado to the case of arbitrary permutation groups. We further generalize this inequality to compact groups and their linear representations over the reals. We characterize saturation of the inequality, and describe the saturation condition in detail for the case of actions on Hermitian operators. Supported in part by the National Science Foundation and the Center for the Mathematics of Information.  相似文献   

16.
Summary By employing a novel idea and simple techniques, we substantially generalize the Turán type inequality for rational functions with real zeros and prescribed poles established by Min [5] to include Lpspaces for 1≤p≤∞<span style='font-size:10.0pt'>while loosing the restriction ρ > 2 at the same time.  相似文献   

17.
Summary By employing a novel idea and simple techniques, we substantially generalize the Turán type inequality for rational functions with real zeros and prescribed poles established by Min [5] to include Lp spaces for 1≤ p ≤ ∞ while loosing the restriction ρ > 2 at the same time.  相似文献   

18.
In this paper, we discuss refinements of the well-known triangle inequality and it is reverse inequality for strongly integrable functions with values in a Banach space X. We also discuss refinement of a generalized triangle inequality of the second kind for Lp functions. For both cases, the attainability of the equality is also investigated.  相似文献   

19.
凸序列不等式的控制证明   总被引:2,自引:0,他引:2  
利用控制不等式理论简洁地证明了一类凸序列不等式 (包括著名的 Nanson不等式的几个推广 ) ,并给出若干应用 .  相似文献   

20.
In this paper we establish an inequality for derivatives of rational functions with a fixed denominator generalizing V. S. Videnskii's inequality to the case of two intervals. To prove its asymptotic exactness, we use a new representation of Akhiezer-Zolotarev fractions with the least deviation from 0 on two intervals. Translated fromMatematicheskie Zametki, Vol. 66, No. 4, pp. 508–514, October, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号