首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Introduction On November 14, 2001, a great earthquake occurred in the western Kunlun Mountain area(Figure 1). The original time is 09h26min10.0s (UTC); the hypocentral location is 35.95°N,90.54°E; focal depth is 10 km from USGS National Earthquake Information Center (NEIC);MS=8.1 from China Seismic Network and Mw=7.8 from Harvard and Earthquake Research Insti-tute (ERI), University of Tokyo. This earthquake, known as the western Kunlun Mountain earth-quake, is an extraord…  相似文献   

2.
The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily,by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000.The results show that:1)Ms\8.1 earthquake in Kulun mountain pass westem occurred in the gravity variation high gradient near gravity‘s high negative variation;2)The Main tectonic deformation and emnergy accumulation before MS=8.1 earthquake are distributed at south side of the epicenter;3)The range of gravity‘s high negative variation at east of the MS=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation;4)Gravity variation distribution in high negative value region is just consistent with the second shear strain‘s high value region of strain field obtained from GPS observation.  相似文献   

3.
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of M S=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. Foundation item: National Natural Science Foundation of China (40374013) and “Researching on the Disaster Earthquake” (2003) of Public Welfare Research Item, Ministry of Science and Technology of China.  相似文献   

4.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. Foundation item: Joint Earthquake Science Foundation of China (201001). Contribution No. RCEG200305, Research Center of Exploration Geophysics, China Earthquake Administration.  相似文献   

5.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

6.
The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthquake of M=8.1 on November 14, 2001, especially the horizontal crustal movement in the western part of China. Based on the datum defined by a group of stable stations with small mutual horizontal displacements for a few years, the time series of horizontal displacements at fiducial stations were obtained. Significant anomalous horizontal displacements had appeared at the fiducial stations in the western part of China since early November 2000 and several earthquakes with the magnitudes about 6.0 had occurred in Yunnan and Sichuan Provinces. The northward components of the horizontal displacement at the fiducial stations in west China had decreased significantly and even changed in the opposite sense since mid April 2001. After the earthquake, the northward displacements still decreased and there were significant westward displacements. The process of the crustal movement in the western part of Chinese mainland (in reference to east China) suggests that the main force source for this earthquake came from the northward pushing of the Indian plate. The great earthquake released a large amount of energy, as a result, the action applied by the Indian plate to Chinese mainland diminished significantly and after the great earthquake, the seismic activity in Chinese mainland decreased considerably until the end of 2002. Foundation item: The National Development and Programming Project for Key Basic Research (95-13-03-07).  相似文献   

7.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum attershock magnitude of 20 earth-quakes with M≥7.5 in Chinese mainland, and then the variation tendency of attershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum attershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side oftbe cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of attershocks would be high.b) The fault of the M--8. l Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault,and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. Alter a comparison analysis, we suggest that the attershock activity level will not be high in the late period of this earth-quake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

8.
Introduction The study on deep crustal faults has been one of the most vigorous subjects in seismology. In the past, 3-D deep seismic sounding and 3-D seismic tomography were usually used for this pur-pose. But it is difficult to obtain the fine structures of the faults in deep crust by these methods. Recently, seismologists in the world pay more attention to the fault zone trapped waves. Since the fault-zone trapped waves arise from coherent multiple reflections at two boundaries of the fau…  相似文献   

9.
It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR technique. Having tried to fit the firsthand field investigation data with a least squares model and obtained a preliminary result, this paper, based on the previous field data and the InSAR data, presents a linear cubic interpolation model which well fits the feature of earthquake fracture zone. This model inherits the precision of investigation data; moreover make use of some advantages of the InSAR technique, such as quasi-real time observation, continuous recording and all-weather measurement. Accordingly, by means of the model this paper presents a method to decompose the InSAR slant range co-seismic displacement (i.e. LOS change) into horizontal and vertical displacement components. Approaching the real motion step by step, finally a serial of curves representing the co-seismic horizontal and vertical displacement component along the main earthquake fracture zone are approximately obtained.  相似文献   

10.

研究了2001年11月14日昆仑山MS8.1大地震前新疆地区宽频带地震仪记录到的异常扰动事件.新疆地震台网在发生强震的前三天记录到了强烈的扰动信号.由于新疆地震台距离昆仑山大地震的震中很近,因此该震前扰动的成因备受关注,一直被认为可能是与大地震相关的慢地震事件,可能是大地震的某种前兆现象.本研究扩大了观测异常扰动事件的范围,分析了欧亚大陆187个宽频带地震仪在2001年11月的观测记录,发现这些地震仪在11月10—12日期间都记录到了时频特征类似的强扰动信号,其中最强的扰动信号出现在挪威台站KONO.调查研究发现挪威海域在11月10—12日期间出现了一次超强北极风暴,我们对扰动源位置初步定位后发现大地震前欧亚大陆各台站记录的最大扰动信号主要来源于挪威西南海岸.本文的研究结果确认昆仑山大地震前新疆台网记录到的强烈震前扰动信号不是与大地震相关的慢地震事件,而是挪威海域北极风暴激发的微地震(地脉动).本文进一步研究表明北极风暴激发的地脉动可显著影响中国大陆的地震和重力观测.在分析中国大陆地震台网记录的强扰动信号时,北极风暴的影响不能忽视.

  相似文献   

11.
Introduction The great Kunlun Mountain earthquake occurred on November 14, 2001 on the border be-tween Xinjiang and Qinghai in west China (36.2N, 90.9E). It was the largest earthquake oc-curred in Chinese mainland in the last 50 years. The Crustal Movement Observation Network of China (CMONOC) established in 1998 mainly for the purpose of earthquake prediction with only 25 fiducial stations for continuous GPS observations, has recorded the precious information of the crustal movement …  相似文献   

12.
A method estimating the stress level in the focal region of an earthquake is proposed here. Taking the 2001 M=8.1 Western Kunlun Mountain Pass earthquake as an example, we estimate its stress level in the focal region before and after it by this method. The results show that the stress level in the focal region just prior to the initiation of this event is approximately 6.3–8 MPa, and about 5–6.7 MPa remained in the focal region after its occurrence. The stress in the focal region decreased by roughly twenty percent after this event. Contribution No. 05FE3026, Institute of Geophysics, China Earthquake Administration.  相似文献   

13.
2001 年11月14日昆仑山口西MS8.1地震是有现代仪器记录以来发生在青藏高原区域最大地震之一,对研究青藏高原的运动学模式具有重要意义.从地震发生至今,不同研究者运用不同资料和方法获取的地震破裂分布还存在一定差异.基于此,本文采用GPS和InSAR资料数据,参考最新研究成果,构建更为合理的断层几何模型,运用SDM方法反演本次地震的破裂分布.在反演中充分考虑不同数据权重的影响及InSAR数据中存在的整体偏移.结果显示本次地震断层性质以左旋走滑为主,最大破裂位错为~6.9 m,分布在35.76°N、93.40°E附近,地震较大破裂区域主要分布在地下20 km以内.同时,反演的位错分布在断层浅部与地质考察得到的地表破裂分布较为吻合.在与前人相关研究的对比中,显示本文结果的可靠性是较高的,例如,近地表破裂包络线与地表考察结果相近,地下破裂分布特征与前人提出的3次子地震事件相一致等,再一次佐证了此次地震由多次子地震事件组成的研究结论.  相似文献   

14.
Introduction An M=8.1 earthquake occurred to the west of the Kunlun Mountain Pass on November 14, 2001 (Kunlun Mountain earthquake for short). It is the largest earthquake during the latest 50 years in Chinese mainland since the 1951 Dangxiong, Tibet M=8.0 earthquake, and it broke the status that there had not occurred any M7.0 earthquake during the subsequent 4 years since the 1997 Mani, Tibet M=7.5 earthquake. Hereafter, the preparation and evolution process of large earthquakes, the v…  相似文献   

15.
We have selected 171 near-field records from 391 aftershock records of the Lulong, Hebei Province, earthquake in October 1982 and relocated the hypocenter of 45 aftershocks using the program Hypoinverse. The distribution of aftershocks reveals a set of earthquake faults: a WNW stretching fault truncates two NNE stretching faults. The two branches of faults show the conjugate structure which is often seen in brittle fracture. The NNE stretching faults are connected together. The Luanhe river valley near Lulong developed to a rudiment rift basin surrounded by a series of faults. The fault of Lulong earthquake is a strike-slip fault with tension component. This fault type matches with the activity of Zhangjiakou-Bohai seismic belt (Zhang-Bo belt) and also shows the action of Zhang-Bo belt as a boundary of two secondary active blocks that truncates the NNE fault. Foundation item: National Natural Science Foundation of China (40234038). Contribution No. 05FE3016, Institute of Geophysics, China Earthquake Administration.  相似文献   

16.
The time-space distribution characteristics of fault deformation anomaly in the near-source region and its outlying zone in the seismogenic process of the Jingtai M s=5.9 earthquake occurred on June 6, 2000 in Gansu Province is studied preliminarily. The distribution scope of fault deformation anomaly before the earthquake is wide, the anomaly shape is complicated and the pattern anomalous zone of fault deformation (strain) information index is obvious. The shape and amplitude of fault deformation anomaly in different regions differ significantly, which is closely related with the tectonic location of anomaly. The fault deformation anomaly of α, β, and γ phases along the western segment of Haiyuan fault zone shows the process from the quasi-linearity to non-linearity of fault movement in the near-source region, matches the high-value anomalous area of fault deformation (strain) information index, and reflects the high strain accumulation in the seismogenic region. However, the anomaly of abrupt jump and cusp with a large amplitude occurred in the areas far from the earthquake, such as Liupanshan fault zone which is the tectonic convergent section does not reflect the strain accumulation of its location, maybe it is a sign that the regional tectonic stress field is strengthened in the seismogenic process. Based on the above-mentioned facts and combined with the preliminary summary of experiences and lessons in the intermediate and short-term prediction of the Jingtai M s=5.9 earthquake, we study and explore the application of fault deformation anomaly to earthquake judgment. Foundation item: National Key Basic Research Development Program (G1998040703 and G1998040705), and State Scientific and Technological Project of the “Ninth Five-Year Plan” (96-913-09-01-02-03 and 96-913-09-02-02-03), China.  相似文献   

17.

位于青藏高原中北部的巴颜喀拉地块是我国西部近年来的主体地震活动区,一系列MW7.0以上强震均发生在该次级块体周边,而其北边界东昆仑断裂带是一条长达2000 km、规模最大、活动性最强的深大断裂带.2001年在东昆仑断裂带中段发生了MW7.8昆仑山地震,2021年5月在其震中东南部大约450 km处巴颜喀拉块体内部一次级断裂上发生了MW7.3玛多地震.玛多地震对人们以往认为强震更可能发生在巴颜喀拉块体边界断裂上的认识提出挑战,但是也为研究巴颜喀拉块体边界断裂与块体内部次级断裂活动关系、地震触发关系带来机遇.本文利用前期基于2001年昆仑山地震后积累的大量InSAR数据获得的震后大范围形变场时空演化图像和库仑应力变化模型,探讨昆仑山地震与玛多地震的关系.InSAR震后观测结果显示:昆仑山地震后沿东昆仑断裂带出现了长达500 km的大范围南北不对称震后形变场,其中南盘形变宽度和量级均明显大于北盘,南盘形变宽度达到250 km,断层近场相对平均形变速率达到>20 mm·a-1,而且南盘向南衰减梯度小,整体衰减缓慢,意味着震后形变对巴颜喀拉块体形成持续东向加载作用,并将分摊到块体内部的一系列次级断裂上,应力加载增加次级断层的地震危险性.2015—2020年InSAR震间应变率场则显示次级断裂——昆仑山口—江错断裂呈高剪切应变率特征.本文计算了昆仑山地震同震破裂和震后形变引起的玛多震区多条SE向次级断裂的累积库仑应力变化,结果显示昆仑山地震同震和震后形变对玛多地震发震断裂(昆仑山口—江错断裂)形成了一定的应力加载.本文认为昆仑山地震同震和长时间尺度震后形变加速了巴颜喀拉块体的东向运动,而断层本身运动学性质和区域应力扰动共同影响了玛多地震的发生.

  相似文献   

18.
An earthquake of M S=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor of this earthquake was inverted using the long period body waveform data from China Digital Seismograph Network (CDSN). The apparent source time functions (ASTFs) were retrieved from P and S waves, respectively, using the deconvolution technique in frequency domain, and the tempo-spatial rupture process on the fault plane was imaged by inverting the azimuth dependent ASTFs from different stations. The result of the moment tensor inversion indicates that the P and T axes of earthquake-generating stress field were nearly horizontal, with the P axis in the NNE direction (29°), the T axis in the SEE direction (122°) and that the NEE-SWW striking nodal plane and NNW-SSE striking nodal plane are mainly left-lateral and right-lateral strike-slip, respectively; that this earthquake had a scalar seismic moment of 3.4×1020 N·m, and a moment magnitude of M W=7.6. Taking the aftershock distribution into account, we proposed that the earthquake rupture occurred in the fault plane with the strike of 250°, the dip of 88° and the rake of 19°. On the basis of the result of the moment tensor inversion, the theoretical seismograms were synthesized, and then the ASTFs were retrieved by deconvoving the synthetic seismograms from the observed seismograms. The ASTFs retrieved from the P and S waves of different stations identically suggested that this earthquake was of a simple time history, whose ASTF can be approximated with a sine function with the half period of about 10 s. Inverting the azimuth dependent ASTFs from P and S waveforms led to the image showing the tempo-spatial distribution of the rupture on the fault plane. From the "remembering" snap-shots, the rupture initiated at the western end of the fault, and then propagated eastward and downward, indicating an overall unilateral rupture. However, the slip distribution is non-uniform, being made up of three sub-areas, one in the western end, about 10 km deep ("western area"); another about 55 km away from the western end and about 35 km deep ("eastern area"); the third about 30 km away from the western end and around 40 km deep ("central area"). The total rupture area was around 70 km long and 60 km wide. From the "forgetting" snap-shots, the rupturing appeared quite complex, with the slip occurring in different position at different time, and the earthquake being of the characteristics of "healing pulse". Another point we have to stress is that the locations in which the rupture initiated and terminated were not where the main rupture took place. Eventually, the static slip distribution was calculated, and the largest slip values of the three sub-areas were 956 cm, 743 cm and 1 060 cm, for the western, eastern and central areas, respectively. From the slip distribution, the rupture mainly distributed in the fault about 70 km eastern to the epicenter; from the aftershock distribution, however, the aftershocks were very sparse in the west to the epicenter while densely clustered in the east to the epicenter. It indicated that the Mani M S=7.9 earthquake was resulted from the nearly eastward extension of the NEE-SWW to nearly E-W striking fault in the northwestern Tibetan plateau. Contribution No. 99FE2016, Institute of Geophysics, China Seismological Bureau. This work is supported by SSTCC Climb Project 95-S-05 and NSFDYS 49725410.  相似文献   

19.
The source parameters, such as moment tensor, focal mechanism, source time function (STF) and temporal-spatial rupture process, were obtained for the January 26, 2001, India, M S=7.8 earthquake by inverting waveform data of 27 GDSN stations with epicentral distances less than 90°. Firstly, combining the moment tensor inversion, the spatial distribution of intensity, disaster and aftershocks and the orientation of the fault where the earthquake lies, the strike, dip and rake of the seismogenic fault were determined to be 92°, 58° and 62°, respectively. That is, this earthquake was a mainly thrust faulting with the strike of near west-east and the dipping direction to south. The seismic moment released was 3.5×1020 Nm, accordingly, the moment magnitude M W was calculated to be 7.6. And then, 27 P-STFs, 22 S-STFs and the averaged STFs of them were determined respectively using the technique of spectra division in frequency domain and the synthetic seismogram as Green’s functions. The analysis of the STFs suggested that the earthquake was a continuous event with the duration time of 19 s, starting rapidly and ending slowly. Finally, the temporal-spatial distribution of the slip on the fault plane was imaged from the obtained P-STFs and S-STFs using an time domain inversion technique. The maximum slip amplitude on the fault plane was about 7 m. The maximum stress drop was 30 MPa, and the average one over the whole rupture area was 7 MPa. The rupture area was about 85 km long in the strike direction and about 60 km wide in the down-dip direction, which, equally, was 51 km deep in the depth direction. The rupture propagated 50 km eastwards and 35 km westwards. The main portion of the rupture area, which has the slip amplitude greater than 0.5 m, was of the shape of an ellipse, its major axis oriented in the slip direction of the fault, which indicated that the rupture propagation direction was in accordance with the fault slip direction. This phenomenon is popular for strike-slip faulting, but rather rare for thrust faulting. The eastern portion of the rupture area above the initiation point was larger than the western portion below the initiation point, which was indicative of the asymmetrical rupture. In other words, the rupturing was kind of unilateral from west to east and from down to up. From the snapshots of the slip-rate variation with time and space, the slip rate reached the largest at the 4th second, that was 0.2 m/s, and the rupture in this period occurred only around the initiation point. At the 6th second, the rupture around the initiation point nearly stopped, and started moving outwards. The velocity of the westward rupture was smaller than that of the eastward rupture. Such rupture behavior like a circle mostly stopped near the 15th second. After the 16th second, only some patches of rupture distributed in the outer region. From the snapshots of the slip variation with time and space, the rupture started at the initiation point and propagated outwards. The main rupture on the area with the slip amplitude greater than 5 m extended unilaterally from west to east and from down to up between the 6th and the 10th seconds, and the western segment extended a bit westwards and downwards between the 11th and the 13th seconds. The whole process lasted about 19 s. The rupture velocity over the whole rupture process was estimated to be 3.3 km/s. Foundation item: 973 Project (G1998040705) from Ministry of Science and Technology, P. R. China, and the National Science Foundation of China under grant No.49904004. Contribution No. 02FE2026, Institute of Geophysics, China Seismological Bureau.  相似文献   

20.
2021年5月22日青海省玛多县发生M_S7.4地震,数小时后在距离震中两百多公里的甘肃玛曲县发生了M_S4.4地震。利用甘肃、青海和四川区域测震台网记录的三分向宽频带数字波形资料,反演甘肃玛曲M_S4.4地震的震源机制解,结果显示此次地震活动面走向、倾角和滑动角分别为105.6°、74.1°和-38.7°。参考玛多M_S7.4地震的震源机制解,发现两次地震震源机制解具有较好的一致性,均呈现明显的左旋走滑特征。静态库伦破裂应力改变量分布计算结果表明,玛曲M_S4.4地震震中位置单位面积(m~2)受到来自玛多地震震中方向的拉应力约为0.02 MPa。综合两次地震的震中距、发震时刻和断层分布等情况,初步判断甘肃玛曲M_S4.4地震应为青海玛多M_S7.4强震的一次触发地震。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号