首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the mechanisms of Zr + reacting with COS,both the quartet and doublet potential energy surfaces (PESs) for reactions of Zr + (4 F,2 D) with COS in the gas phase have been investigated in detail by means of density functional method (B3LYP).To obtain more accurate results,the coupled cluster single-point calculations (CCSD(T)) using B3LYP optimized geometries were performed.For the C-O bond activation,the calculated results indicate that both the quartet and doublet states proceed via an insertion-elimination mechanism.For the C-S bond activation,the quartet reaction has an insertion-elimination mechanism,but the doublet reaction is a direct abstraction of the sulfur atom by Zr +.The C-S bond activation is found to be energetically more favorable than the C-O bond activation.It is found that the reaction of the 4 F gound state of Zr + to yield ZrO + is spin-forbidden (Zr + (4 F) + COS (1 Σ) → ZrO + (2) + CS (1 Σ)) and the crossing points were approximately determined.All the results have been compared with the existing experimental and theoretical data.  相似文献   

2.
The two-state mechanism of the reaction of Nb(NH2)3 with N2O on the singlet and triplet potential energy surfaces has been investigated at the B3LYP level.Crossing points between the potential energy surfaces have been located using different methods.Analysis of the strain model shows that the singlet state of the four-coordinate(N2O)Nb(NH2)3 complex with N2O bonded via terminal N atom coordination(12) is more stable in the initial stage of reaction,since the bending of the N2O fragment [Edef(N2O) = 86.1 kcal mol-1] results in an energy splitting of the doubly degenerate LUMO;the low-energy LUMO can now strongly couple with the occupied Nb-localized d orbitals,forming a back-bond and transferring charge(q = 0.82 e) from Nb(NH2)3 to the N2O ligand.Going from 32 to 12,the reacting system changes spin multiplicity near the MECP(minimal energy crossing point) region,which takes place with a spin crossing barrier of 9.6-10.0 kcal mol-1.Analysis of spin-orbit coupling(SOC) indicates that MECP will produce a significant SOC matrix element.The value of SOC is 111.52 cm-1,due to the electron shift between two perpendicular φ orbitals with the same rotation direction,and the magnitude of the spin-multi-plicity mixing increases in the small energy gap between high-and low-spin states,greatly enhancing the probability of intersystem crossing.The probabilities of single(P1 ISC) and double(P2 ISC) passes estimated at MECP(SOC = 111.52 cm-1) are approximately 1.17×10-2 and 2.32×10-2,respectively.  相似文献   

3.
The calculated TST-CEQ state-selected reaction cross sections and rate constants forthe exchange reaction of H+ClH are reported.It is found that,although the collinear proba-bilities exhibit the oscillating behaviour,the TST-CEQ cross sections do not oscillate.Compa-rison of the different state-selected cross sections at a constant total energy indicates thattranslational energy is more effective than vibrational energy in promoting the reaction H+ClH.We also find that,the larger the vibrational quantum number of the reactant,the larger thereactive rate constant k~(TST-CEQ)(T,v)is at a given temperature.The state-selected rate constantsare then averaged to yield the thermal rate constants which are shown to be in good agreementwith our VTST calculations and those by Schwenke et al..  相似文献   

4.
8-Oxoguanine(8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species, gives rise to a G·C→T·A transversion during replication and thereby must be repaired. The effects of explicit and implicit solvent molecules on the hydrolysis cleavage of N-Glycosidic bond in 8-oxo-7,8-dihydro-2'-deoxyguanosine(8-oxo-dG) have been systematically clarified in the present work based upon two types of computational models. Detailed potential energy surface(PES) scans and full unconstraint optimizations for all the representative points on PESs were carried out at the B3LYP/6-31+G(d) level of theory. The effect of implicit solvent was tested by single-point calculation at the SCRF/IEF-PCM model. The results illustrate that the direct hydrolysis model involving one explicit water molecule can't provide a complete depiction of the hydrolysis process of 8-oxo-dG, attributed to the insufficiency of nucleophile activation and leaving group stabilization. The expansion hydrolysis model involving four explicit water molecules, however, facilitates discrete proton transfer and therefore produces smooth reaction surfaces for both the dissociative(SN1) and concerted(SN2) pathways. The presence of the implicit solvent substantially lowers all activation energies and the SN1 process is more favorable than the SN2 process. The data and insights present here agree well with the experimental results and have given out a baseline for the enzymatic deglycosylation reaction of 8-oxo-dG.  相似文献   

5.
The NO2 NO2^- electron transfer reaction was studied with DFT-B3LYP method at 6-311 G^* basis set level for the eight selected structures:four species favor the structure of “head to head”.The geometry of transition state was obtained by the linear corrdinate method.Three parameters,non-adiabatic activation energy(Ead),coupling matrix element(Hif) and reorganization energy(λ) for electron transfer reaction can be calculated.According to the reorganization energy of the ET reaction,the values obtained from George-Griffith-Marcus (GGM) method(the contribution only from diagonal elements of force constant matrix) are larger than those obtained from Hessian matrix method(including the contribution from both diagonal and off-diagonal elements), which suggests that the coupling interactions between different vibrational modes are important to the inner-sphere reorganization energy for the ET reactions in gaseous phase.The value of rate constant was obtained by using above three activation parameters.  相似文献   

6.
The ionic and neutral state potential energy surfaces (PESs) of Na I2 collision system have been calculated on QCISD(T) level by using ab initio method.The location and depth of the potential well,the collision radius and their fine structures have been analyzed at the equilibrium geometry of I2 molecule.The electronic transfer probabilities are also calculated in terms of Landau-Zener model.The lifetime of scattering resonance state is evaluated by the uncertainty principle.All the results have been compared with those obtained according to the Aten-Lanting-Los PES and Feng‘s PES.  相似文献   

7.
《结构化学》2020,39(8):1405-1421
A comprehensive density functional theory calculation was employed to investigate the possible reaction pathways and mechanisms of methane complete oxidation(CH_4 + 2O_2 → CO_2 + 2H_2O) on different manganese oxides including a-MnO_2(100) and b-MnO_2(111) surfaces. According to a coupling of the Mars-van Krevelen and Langmuir-Hinshelwood mechanism, the activation energy barrier and the reaction energy of each elementary surface reaction were determined. Our calculated results show that the detailed processes for methane oxidation on two surfaces are different due to the differences in the surface structure. The breaking of the last C–H bond of CH_4 moleculeis the rate-determining step with an activation barrier of 0.85 eV for a-MnO_2(100) surface. By contrast, the overall reaction rate on b-Mn O_2(111) surface is limited by the dissociation of the second O_2 molecule adsorbed on the vacancy site, and re-oxidation of the reduced b-MnO_2(111) surface by the gaseous oxygen requires a much higher energy barrier of 1.44 eV. As a result, the a-Mn O_2(100) exhibits superior activity and durability in the methane oxidation reaction than b-MnO_2(111) surface. The present study provides insight into understanding the structure-catalytic activity relationship of the catalysts based on manganese oxides towards the methane oxidation reaction.  相似文献   

8.
The reactions of Mn+(7S,5S) with CS2 have been studied at the B3LYP/TZVP level on both septuplet and quintet potential energy surfaces(PESs).The overall energies have been refined at the CCSD(T) level.The calculated results indicate that the reactions of Mn+(7S,5S) with CS2 proceed via an insertion-elimination mechanism.Calculations show that the quintet reaction is more favorable than the septuplet under high energy conditions.The spin-forbidden reaction Mn+(7S) + CS2 → MnS+(5Π) + CS proceeds through a septuplet-quintet surface and the crossing seam is approximately determined.All results have been compared with the existing experimental and theoretical data.  相似文献   

9.
The potential energy surface and reaction mechanism corresponding to the reaction of ytterbium monocation with fluoromethane, which represents a prototype of the activation of C-F bond in fluorohydrocarbons by bare lanthanide cations, have been investigated for the first ime by using density functional theory. A direct fluorine abstraction mechanism was revcaled, and the related thermochemistry data were determined. The electron-transfer reactivity of the reaction was analyzed using the two-state model, and a strongly avoided crossing behavior on the transition state region was shown. The present results support the reaction mechanism inferred from early experimental data and the related thermochemistry data can provide a guide for further experimental researches.  相似文献   

10.
In the present paper, scattering probabilities and rate constants of different channels for the H + BrCH_3 reaction system have been calculated by means of quasiclassical trajectory (QCT) method. Several important kinetic effects such as vibrational enhancement, channel competition, vibrational adiabaticity, mass combination, coupling of angular momenta and the relation between the kinetic effects and the feature of the potential energy surface have been discussed. Based on these analyses, a direct-type rebonded mechanism for this reaction has been inferred and used to explain the nonsymmetric angular distribution of the products crossed-molecular beam experiment. The agreement of calculation with experimental results is satisfactory.  相似文献   

11.
1 INTRODUCTION The reactions between halogen and halogen are basic reactions in chemistry. Especially, in the syn- thesis of iodo-substituted aromatic hydrocarbon, the reaction Cl2 I2 = 2ICl could heighten the usage of iodine atom to 100%. So far, to the best of our know- ledge, the studies about halogen-halogen reaction mechanisms are very few. In detail, only the struc- ture and stability studies of X2Y- (X, Y = Cl, Br and I) ions by calculating reaction potential energy sur- face…  相似文献   

12.
The two possible reaction paths of producing ethane on coupling reaction of methane through plasma were theoretically investigated by B3LYP and MP2 methods with 6-311G^* respectively and further compared with the previous results calculated from B3LYP/6-31G^*. The new investigated results consistently confirmed the previous conclusion. And the influences of the calculation methods and basis sets on the calculated results were also discussed.  相似文献   

13.
A scheme has been proposed to classify valence bond(VB) wave functions for the calculations of ground and excited states,according to the symmetry properties of one-electron orbitals which are involved in the construction of VB wave functions.This scheme is illustrated by the examples of BeH and BH.Ab initio VB computations of these two test molecules in combination with the present classification scheme give reliable results.For example,calculation results show that the state C2∑ of BeH is stable,with the bonding energy 0.87 eV and bond length 0.238nm,which are in good agreement with those obtained by Gerratt et al.The bonding features of ground and low-lying excited states of BeH and BH are discussed.  相似文献   

14.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than  相似文献   

15.
The potential energy surface for the CH3S NO2 reaction has been studied using the ab initio G3(MP2) method. A variety of possible complexes and saddle points along the minimum energy reaction paths have been characterized at UMP2 (full)/6-31G(d) level. The calculations reveal dominating reaction mechanisms of the title reaction: CH3S NO2 firstly produce intermediate CH3SONO,then break up into CH3SO NO. The results are valuable to understand the atmospheric sulfur compounds oxidation mechanism.  相似文献   

16.
The reaction mechanism of amadori rearrangement in the initial stage of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution.Cyclic ribose and glycine were taken as the model in the amadori rearrangement.Reaction mechanisms have been proposed,and possibility for the formation of different compounds has been evaluated through calculating the relative energy changes for different steps of the reaction by following the total mass balance.The calculations reveal that the amadori rearrangement initialized via the intramolecular rearrangement,transferring one proton from N(3) to O(4) atom.In the next step,the second proton is also transferred from N(3) to O(4) atom,corresponding to the cleavage of C(4)-O(4) bond and the release of one water molecule.Then another proton is transferred from N(3) to C(5) atom via TS3 with the reaction barrier of 58.3 kcal·mol-1 after tunneling the effect correction calculated at the B3LYP/6-31+G(d) level of theory,and this step is rate limiting for the whole catalytic cycle.Ultimately,the product is generated via keto-enolic tautomerization.Present calculation could provide insights into the reaction mechanism of Maillard reaction since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.  相似文献   

17.
The microcosmic reaction mechanism of K2CO3-catalyzed 1-chlo-2-propanol and carbon dioxide has been investigated by density functional theory(DFT) at the GGA/PW91/DNP level.We optimize the geometric configurations of reactants,intermediates,transition states,and products.The energy analysis calculation approves the authenticity of intermediates and transition states.According to our calculations,four feasible reaction pathways are found.The main pathway of the reaction is ReA → IMA1 → TSA1 → IMA2 → IMA5 → TSA5 → P.Besides,we also in-vestigate the reaction mechanism of 1-chlo-2-propanol and carbon dioxide without K2CO3-catalyzation by the same theory and level.The computational results indicate that the activation barrier with K2CO3-catalyzed is smaller than the activation barrier without K2CO3-catalyzed.That is to say,K2CO3 can promote the reaction to give the product in a high yield,which is in agreement with the experimental results.  相似文献   

18.
The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction: decreasing the activation energy and stabilizing the C=N double bond owing to the conjugative effect of p-π-p of products and transition states.  相似文献   

19.
XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.  相似文献   

20.
The Os+-catalytic reduction of N2O by H2 in gas phase has been theoretically investigated with B3LYP method.The reaction mechanisms on the sextet and quartet surfaces were found to be similar.The calculated sextet potential energy profiles show that the two reactions involved in the catalytic cycle,Os+ + N2O → OsO+ + N2 and OsO+ + H2 → Os+ + H2O,have barriers of 28.3 and 123.3 kJ/mol,respectively.In contrast,the reactions on the quartet surfaces are energetically much more favorable.These results rationalize the experimentally observed low catalytic reactivity of sextet(ground-state) Os+.Further,the crossing between the sextet and quartet surfaces are also suggested and qualitatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号