首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由于路面不平整导致车辆行驶过程中产生很大的振动现象,因此采用鲁棒神经网络控制系统,实现车辆悬架振动的有效控制,并对控制结果进行仿真验证.建立了车辆7自由度振动悬架系统模型简图,构造了车辆振动动力学方程式.应用了PID控制器,通过增加指数函数对传统PID控制器中的组件进行求导,推导出鲁棒神经网络控制系统.采用数学软件Matlab/Simulink对神经网络控制系统进行仿真,同时与PID控制器进行对比和分析.仿真结果显示,车辆行驶过程中遇到路面随机产生的激励波后,主动悬架采用鲁棒神经网络控制跟踪误差较小,具有自适应调节功能.采用鲁棒神经网络控制车辆主动悬架,可以降低车辆垂直方向的振动幅度,提高车辆行驶的平稳性.  相似文献   

2.
以提高轮毂电机驱动电动汽车转向稳定性为目的 ,针对传统PID算法扰动抑制能力不足,利用神经网络提高基于PID的横摆力矩和滑移率控制系统的稳定性,并针对神经网络收敛速度慢、易陷入局部最优解的问题,提出利用粒子群算法对控制器参数进行优化并对权值进行改进的神经网络PID方法.以四轮轮毂电机独立驱动电动汽车为研究对象,以跟踪期望的横摆角速度为控制目标,基于Carsim/Simuink联合仿真平台,对建立的四轮独立驱动电动汽车横向运动学模型及提出的控制策略进行不同工况下的对比验证,结果表明提出的控制方法优化了传统PID控制算法,振动频率幅值小、能更好地逼近理想值,可改善车辆转向性能、提高稳定性以避免事故的发生.  相似文献   

3.
移动机器人在复杂环境中运动,容易受到各种波形的干扰,导致移动机器人跟踪误差较大.对此,创建了移动机器人平面简图模型,建立移动机器人动力学方程式.在传统PID控制方法的基础上,设计了模糊神经网络PID控制方法.采用改进粒子群算法优化模糊神经网络PID控制参数,输出最优PID控制参数.采用Matlab软件对移动机器人跟踪误差进行仿真,并与传统PID控制方法进行比较和分析.仿真结果显示:在正弦波的干扰环境中运动,传统PID控制方法不能抑制外界环境的干扰,实际运动轨迹与理论运动轨迹偏差较大;而改进模糊神经网络PID控制方法能够抑制外界环境的干扰,实际运动轨迹与理论运动轨迹偏差较小.移动机器人控制系统采用改进模糊神经网络PID控制方法,能够在线调整PID控制器参数,控制精度较高.  相似文献   

4.
为解决振动主动控制系统中接触式测量影响结构特性以及PID控制参数整定不理想的问题,提出利用机器视觉技术测量结构振动,并结合人工鱼群算法优化的PID进行振动控制。首先,选择刚柔双关节机械臂作为研究对象,搭建实验平台并设计正交试验,探究刚柔耦合机械臂振动情况,并确定振动控制中电机参数的设置;其次,利用CCD相机采集机械臂末端标记点振动图像,并处理得到振动位移,将其作为控制系统输入;最后,选择人工鱼群算法对PID控制器参数进行优化,控制器输出信号经输出卡转化为控制电压,再经功率放大器放大,驱动压电作动片实现振动控制。实验结果表明,相较于传统参数整定PID平均44.06%的控制效果,优化后的PID算法平均控制效果可达到57.54%,验证了基于视觉测振的优化PID控制系统的可行性和优越性。  相似文献   

5.
以提高车辆的减震性能、维持车辆行驶的稳定性为目标,提出一种具有PID反馈环节的自适应车辆减震控制系统。阐述车辆减震系统的基本结构,构建减震系统的数学模型。以单神经网络算法为基础,完成PID控制环节的优化设计。利用AMESim建立具有PID控制环节的自适应控制系统仿真模型,并进行仿真实验。结果证明:PID控制系统提高了车辆悬架减震系统的减震效果与稳定性。  相似文献   

6.
为了提高车辆转向控制系统输出精度,改善车辆行驶的稳定性,提出了改进人工神经网络PID控制器.创建车辆平面参考模型简图,建立车辆运动参数的数学关系式,推导出车辆横摆角速度的动力学方程式.在传统PID控制器基础上,结合人工神经网络模型,采用改进粒子群算法对人工神经网络PID控制器进行在线优化,动态调整PID控制器参数,实现车辆转向控制系统的最优输出,在不同工况路面进行车辆横摆角速度仿真实验.结果表明:采用改进人工神经网络PID控制器,不仅可以提高车辆转向控制系统的响应速度,而且输出的摆动角速度误差较小.车辆在复杂工况路面行驶,其转向系统采用改进人工神经网络PID控制器,有利于提高车辆行驶的稳定性.  相似文献   

7.
汽车牵引力控制系统的变参数自适应PID控制   总被引:5,自引:0,他引:5  
合理的驱动轮滑转率控制是保证汽车具有良好急加速驱动性能和稳定性的前提.复杂路面条件下汽车牵引力控制系统对驱动轮滑转率的控制需要基于驾驶员加速驾驶意图判断结果,通过合理协调发动机转矩干预和主动制动来实现.由于驾驶意图和路面附着条件的改变引起汽车动力学参量以及实际控制系统边界条件的改变,使得传统的PID控制的应用受到限制,因而提出一种可变参数的自适应PID控制器,根据驱动轮实际滑转率与目标滑转率的偏差自适应的调整PID控制器中的整定参数值,从而改善PID控制的控制品质,使汽车在复杂路况和工况条件下均能实现良好的驱动轮滑转率控制.根据不同控制参数组合方式,系统可以在发动机转矩控制、主动制动控制以及两种执行器耦合作用等三种控制模式中切换,实现驱动轮滑转率控制的目标.仿真与实车道路试验验证了这一方法的有效性.  相似文献   

8.
从提高双容水箱液位控制系统的稳定性和控制精度出发,设计了一种基于改进人工蜂群算法的PID控制调整策略。该策略针对人工蜂群算法全局探测能力不足而易陷入局部最优解的问题,提出将遗传算法的交叉操作引入到人工蜂群算法中,使其可以得到更加精确的PID控制参数。通过仿真分析并与传统的PID控制相比较,结果表明,经过改进的人工蜂群算法优化的PID控制具有静态误差小、调整时间短、超调量小等优点,能很好的满足控制过程的动态性能,具有重要的实用价值。  相似文献   

9.
针对滚动轴承故障振动信号微弱难以识别的问题,提出采用改进人工鱼群算法优化的神经网络诊断方法。首先,引入速度动态参数对人工鱼群算法固定搜索步长进行改进,并用改进人工鱼群算法优化神经网络。其次,采用最小二乘趋势分析消除实验室采集到的滚动轴承内环、外环和滚珠三种故障振动信号的趋势项;并根据时频域特征参数的变化趋势筛选出均值、标准差和波峰因子这三个能够明显反映不同故障类型的特征参量。最后,将遗传算法、粒子群算法等优化的神经网络作为对比算法用于滚动轴承故障诊断。仿真结果表明:这里提出的方法相比对比算法,20次平均诊断准确率高、误差小、稳定性高。  相似文献   

10.
提出一种基于粒子群优化与径向基(Radical basis function,RBF)神经网络优化算法的商用车横向稳定性优化控制策略,采用上、下双层控制模式,上层控制器以横摆角速度与质心侧偏角为控制目标,依据车辆行驶工况的反馈信息,利用粒子群优化(Particle swarm optimization,PSO)算法对模糊控制器中的比例因子参数实施动态优化,实现对前轮附加转角和横摆力矩的控制。下层控制器采用RBF神经网络优化制动力分配,通过对横摆角速度偏差的自适应学习,结合滑移率控制器实时优化分配左、右前轮的制动器制动力并修正前轮转角。基于搭建的Truck Sim与Matlab/Simulink联合仿真环境,选取典型试验工况进行车辆横向稳定性仿真分析。研究结果表明,与传统的电子稳定控制系统(Electronic stability control,ESC)控制策略相比较,优化控制后车辆的横摆角速度、质心侧偏角以及侧向加速度等动态响应指标均满足控制要求,并且实际行驶轨迹与目标规划路径之间具有良好的跟随性,有效改善了低附着路面行驶条件下商用车的横向稳定性。  相似文献   

11.
《机械科学与技术》2015,(8):1283-1288
重型车辆在崎岖山路或下长坡行驶时,可以通过控制液力缓速器实现恒力矩制动特性达到稳定行驶的目的。针对液力缓速器能在短时间内产生高制动力现象,提出一套液压控制系统,实现缓速器恒力矩制动性能。这套控制系统通过考虑缓速器充液率、排油阀开度和内腔油压,采用液力计算法解决液力缓速器建模的液力损失问题。并基于整车制动仿真和微分先行增量式PID(DFIPID)控制策略仿真,建立液力缓速器液压控制联合仿真的模型,得到在较高充液率情况下,排油阀开度和内腔油压的变化规律,最终实现恒力矩制动性能的控制。分析结果表明:在制动过程中,在较高充液率的前提下,需要调节排油阀的开度来保证液力缓速器较高强度的恒力矩功能。  相似文献   

12.
针对常规PID控制参数变化系统效果不佳的缺点,设计一种利用智能控制理论RBF神经网络与模糊控制技术相融合的新型智能PID控制方法[1]。该控制方法将系统的输入误差及其变化率进行模糊化后,再利用RBF神经网络算法对PID控制参数进行在线学习、运算和整定[2]。MATLAB仿真结果表明,基于上述的PID控制方法能够克服传统PID控制器的局限性,具有较高的控制精度,较好的动态品质及较强的鲁棒性。  相似文献   

13.
为提高独立驱动电动汽车在极限工况下的稳定性,提出了基于神经网络PID控制策略的直接横摆力矩决策算法,控制质心侧偏角和横摆角速度并进行转矩分配。基于2自由度车辆模型的线性化特征参数与实际车辆控制目标的偏差,引入动量优化项对神经网络权值进行在线更新,计算出跟踪理想质心侧偏角和横摆角速度所需的直接横摆力矩,通过车辆前后轴动态载荷估计,考虑驱动电机饱和输出力矩和路面限制条件的约束,对各驱动轮进行直接横摆力矩分配。将算法应用于CarSim/Simulink联合仿真模型进行工况仿真实验。结果表明,该方法能够保证车辆在中速情况下于光滑路面紧急转向和紧急移线换道操作稳定性,以及在路面湿滑情况下高速超车快速并线的稳定性。  相似文献   

14.
鉴于传统凝固浴控制系统中PID控制参数整定方法存在的缺陷,该文提出了一种采用蚁群算法优化PID控制参数的方法。通过建立凝固浴液位控制系统数学模型,将系统控制参数的选择转化为路径选择,从而将蚁群算法成功地应用到PID控制参数的优化上。将所得的结果与遗传算法、传统的Ziegler-Nichols(ZN)法进行了仿真比较,该方法调节时间短,响应速度快,超调量小。仿真实验结果验证了该方案的可行性和有效性。  相似文献   

15.
针对传统永磁同步电机(PMSM)的PID控制系统存在的转速响应时间慢、超调以及稳态误差大等问题,在传统PID控制上引入柔性神经网络与模糊控制,提出了一种柔性神经网络模糊PID控制算法。基于该算法设计了PMSM控制系统,并通过MATLAB建立其仿真模型。仿真结果表明,与模糊PID及柔性神经网络PID相比,柔性神经网络模糊PID控制能有效减少转速响应时间和稳态误差。  相似文献   

16.
针对液压伺服驱动机械手运动轨迹跟踪误差较大的问题,引用改进神经网络PID控制器,对控制效果进行了验证.创建了机械手运动机构平面简图,推导出机械手末端执行器运动的几何关系式,阐述了伺服阀控制工作原理,给出了压力和流量控制方程式.采用改进粒子算法优化神经网络PID控制器,给出了机械手液压驱动控制的在线控制流程图.结合具体实例,将初始参数输入到Matlab软件中进行轨迹误差仿真,并与PID控制误差进行比较.误差结果表明:采用改进神经网络PID控制,产生的最大误差为3.3×10~(-2) m,误差波动程度较小;采用PID控制,产生的最大误差为6.7×10~(-2) m,误差波动程度较大,机械手液压伺服驱动采用改进神经网络PID控制,能够提高机械手运动轨迹跟踪精度.  相似文献   

17.
为了使移动机器人在已知环境中规划出最优路径并对路径进行跟踪,提出了基于改进人工鱼群算法的机器人路径规划方法和PID跟踪方法。使用栅格法建立了环境模型;分析了传统人工鱼群算法原理,对算法的视觉范围、移动步长、可行走区域进行了重新定义,使之能够适用于栅格环境;提出了加权平均视觉范围和自适应拥挤度因子,兼顾了算法前期大范围搜索和后期细致搜索;使用改进人工鱼群算法优化PID控制参数;经实验,相比于传统算法,改进算法规划出的路径长度减少了11.4%,改进算法优化的PID参数在超调量、上升时间、震荡次数等方面优势明显。  相似文献   

18.
传统的PID神经网络,由于初始权值随机选择,权值学习采用BP算法,所以容易陷入局部极值,进而导致该方法无法得到高精度的控制结果。该文提出采用搜寻者优化算法优化PID神经网络初始权值,再把最优初始权值带入PID神经网络,实现解耦控制。对一个耦合系统进行仿真实验,结果表明,与目前控制效果较好的粒子群算法优化PID神经网络相比,该算法收敛速度更快、稳态误差更小,同时也具有良好的自适应和抗干扰能力,能够实现快速、高精度、稳定的解耦控制。  相似文献   

19.
汽车在低附着系数路面加速、起步或爬坡时,驱动轮极易发生过度滑转从而使汽车失去稳定性,汽车牵引力控制系统将驱动轮的滑转率控制在最佳的范围。建立了四轮驱动汽车的动力学模型,以驱动轮的滑转率为控制目标,采用基于模糊PID控制的汽车牵引力控制的算法,设计了以制动阀占空比为控制对象,从而达到调节轮缸制动压力的目的,在MatLab/Simulink仿真环境下,对车辆在均一和分离两种路面上进行了仿真,对比仿真结果,表明模糊PID控制具有响应速度快、稳态性能好的特点。  相似文献   

20.
针对超声电机驱动多关节机器人的运行特性,提出一种新颖的速度-位置双闭环PID控制模式,有效地抑制了超声电机响应极快所导致的速度变化剧烈的现象,从而提高了机器人的运动平稳性.为了进一步提高超声电机驱动多关节机器人的控制性能,使其能根据超声电机的变化特性对PID控制参数进行实时调节,提出类PID小波神经网络控制器.通过对传统离散型增量式PID表达式各项的合理划分,将速度-位置双闭环PID控制、实践经验、当前的轨迹误差及其变化情况都融入进了类PID小波神经网络控制器中.该控制器参数的在线学习机制采用了δ自适应律并结合了BP算法和梯度下降法,算法简单,计算量大大减少.试验结果证明,所设计的类PID小波神经网络控制器不仅明显优于PID和PID神经网络控制器,而且具有很好的抗干扰能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号