首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
BPA在Na-MMT-CMC/GCE修饰电极上的电化学行为与检测   总被引:2,自引:1,他引:1  
用循环伏安法和方波溶出伏安法研究了双酚A(BPA)在Na-MMT-CMC/GCE修饰电极上的电化学行为,并建立了一种检测BPA的电化学方法.实验表明:在pH 11.27的B-R缓冲溶液中,在0.42 V处出现一灵敏度高、峰形好的氧化峰.在优选的实验条件下,BPA浓度在6.0 ~80 μmol/L范围内与峰电流呈良好的线性关系,方法检出限为0.24 μmol/L,运用该法用于BPA回收率的测定取得令人满意的结果.  相似文献   

2.
通过电聚合方法制备聚对氨基苯磺酸修饰的玻碳电极(GCE/pABSA),然后把带有正电荷的超支化聚乙烯亚胺功能化还原氧化石墨烯(BPEIGr)和带有负电荷的金纳米粒子(AuNPs)依次修饰到电极上,制得GCE/pABSA/BPEIGr/AuNPs修饰电极。研究了双酚A在GCE/pABSA/BPEIGr/AuNPs修饰电极上的电化学行为。结果表明,所制备的修饰电极对双酚A有良好的电催化效果,在pH 7.0的PBS溶液中进行循环伏安扫描,双酚A在0.2~0.8 V范围内出现1个不可逆的氧化还原峰。采用差分脉冲伏安法(DPV)对双酚A进行了检测,在优化的条件下,双酚A的浓度在0.05~10μmol/L范围内与氧化峰电流呈线性关系,检出限为0.02μmol/L(3σ)。将基于此修饰电极的传感器用于浑河水和自来水中双酚A含量的测定,加标回收率在97.0%~105.0%之间。  相似文献   

3.
石墨烯特有的褶皱层状结构以及银纳米粒子良好的催化性能,使其在电化学方面具有良好的应用潜能.本研究以柠檬酸钠为还原剂,通过水热反应原位制备出还原石墨烯/纳米银复合材料(rGO/AgNPs),用于修饰玻碳电极,研究了双酚A的电化学行为.循环伏安法(CV)和方波伏安法(SWV)的实验结果表明,双酚A可以在rGO/AgNPs修饰电极表面发生快速的氧化还原反应,基于此实现了对双酚A的高灵敏检测.在最优条件下,双酚A的氧化峰电流与其浓度在0.1~40.0μmol/L范围内呈良好的线性关系(r2=0.996),检出限为50.7 nmol/L(S/N=3).将其用于实际环境和塑料样品中双酚A的检测,回收率为91.7%~102.9%.  相似文献   

4.
制备了碳纳米纤维修饰碳糊电极,并用于双酚A的高灵敏和高选择性电化学检测。碳纳米纤维材料经静电纺丝和碳化过程相结合制备而成,采用滴涂的方法修饰于碳糊电极表面制成电化学传感器。利用循环伏安法、交流阻抗法以及微分脉冲伏安法考察了传感器的性质及双酚A的电化学行为。结果表明,双酚A的峰电流响应与其浓度在0.8~50μmol/L之间呈良好的线性关系,检测限为0.1μmol/L。构建的电化学传感器用于环境水样中双酚A的检测具有较高的回收率。  相似文献   

5.
该文制备了二氧化硅/金复合膜修饰玻碳电极(SiO_2/Au/GCE),提出了一种简便检测双酚A(BPA)的电化学分析方法。采用扫描电镜(SEM)和红外光谱(FT-IR)对SiO_2和SiO_2/Au的形貌和结构进行了表征,循环伏安法(CV)和交流阻抗法(EIS)研究了SiO_2/Au/GCE的表面电化学特性,同时用CV、计时库仑法(CC)、控制电位电解库仑法、线性扫描伏安法(LSV)和差分脉冲伏安法(DPV)等研究了BPA在SiO_2/Au/GCE上的电化学行为,优化了实验参数,并得到电化学动力参数。实验发现:SiO_2/Au/GCE对BPA具有良好的电催化活性,BPA在该修饰电极上的氧化峰电流为GCE上的3倍,且BPA在SiO_2/Au/GCE上的氧化过程为2电子2质子的完全不可逆电极过程。在最佳条件下,BPA的氧化峰电流分别在0.01~0.50μmol/L和0.50~25μmol/L浓度范围内呈良好的线性关系,检出限为1.9×10-8mol/L。用于一次性手套中BPA含量的测定,回收率为98.9%~105.3%,与高效液相色谱法(HPLC)进行对照,结果满意。  相似文献   

6.
利用水热法合成了纳米氧化锌/碳纳米管复合材料,将该复合材料滴涂在玻碳电极表面,制得纳米氧化锌-碳纳米管复合材料修饰电极(ZnO-MWCNTs/GCE)。在阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)存在下,利用循环伏安法研究了双酚A在修饰电极上的电化学行为。考察了溶液pH值、CTAB浓度和富集时间等对测定的影响。结果表明,在pH 7.0的含8.0×10-5mol/L CTAB的磷酸盐缓冲液中,该修饰电极对双酚A具有良好的电化学响应,双酚A在修饰电极上的氧化峰电流为裸电极上的7倍。在优化条件下,采用差分脉冲伏安法对双酚A进行测定。双酚A的峰电流在5.0×10-8~1.5×10-5mol/L浓度范围内呈良好的线性关系,检出限(S/N=3)为1.0×10-8mol/L。对1.0×10-5mol/L双酚A平行测定8次的相对标准偏差为4.6%。该法用于塑料制品中溶出双酚A的测定,回收率为99%~107%,结果满意。  相似文献   

7.
以La(OH)3纳米片为修饰剂,制备了基于La(OH)3纳米片修饰玻碳电极(LNP/GCE)。采用循环伏安(CV)法研究了鸟嘌呤(G)和腺嘌呤(A)在该修饰电极上的电化学行为。实验结果表明,在HAc-NaAc缓冲溶液中,该修饰电极对G和A都表现出了良好的电催化性能。在最佳条件下,用差分脉冲伏安(DPV)法对G和A进行了测定,其氧化峰电流与G和A的浓度在0.1~10μmol/L范围内呈良好的线性关系,检测限(S/N=3)分别为0.01μmol/L和0.03μmol/L。将该修饰电极用于DNA中A和G的同时测定,获得较好结果。  相似文献   

8.
制备了金纳米粒子/碳纳米管修饰玻碳电极(AuNPs-CNTs/GCE),采用循环伏安法和线性扫描伏安法研究了4-壬基酚在修饰电极上的电化学行为,并建立了一种灵敏简便地检测4-壬基酚的电化学方法。优化了pH值、扫描速率、富集时间等测定参数,并计算出pH值与氧化峰电压、扫描速率与氧化峰电流之间的数量关系。在pH 10.0的BR缓冲溶液中,4-壬基酚在AuNPs-CNTs/GCE上出现灵敏的氧化峰,氧化电位为0.51 V。与裸玻碳电极(GCE)和单一碳纳米管修饰电极(CNTs/GCE)相比,AuNPs-CNTs/GCE明显提高了4-壬基酚的氧化电流。在优化实验条件下,4-壬基酚的浓度分别在0.05~4μmol/L和6~14μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为0.023μmol/L,对于实际样品测定的回收率为95%~104%。该修饰电极具有良好的重现性和稳定性,可用于环境样品中4-壬基酚的直接检测。  相似文献   

9.
以聚罗丹明B/碳纳米管复合材料修饰玻碳电极(PRh B/CNTs/GCE)为工作电极,通过电催化氧化法应用于亚硝酸盐的灵敏检测。采用循环伏安法(CV)、示差脉冲伏安法(DPV)和安培法考察了NO-2在PRh B/CNTs/GCE上的电化学行为和电催化机理。研究结果表明,与单一PRh B/GCE相比,NO-2的氧化电压明显下降(124 m V),氧化电流提高79%。PRh B/CNTs/GCE对亚硝酸盐的电催化氧化机理是2电子参与的不可逆反应。采用DPV法检测高浓度NO-2,氧化电流与多种NO-2浓度区间呈良好的线性关系,线性范围分别为2~25μmol/L(Ip=94.92 cNO-2+0.05,r2=0.992 3)、35~500μmol/L(Ip=20.32cNO-2+2.65,r2=0.995 8)和500~8 000μmol/L(Ip=10.74cNO-2+8.64,r2=0.997 7)。采用安培法检测低浓度NO-2,其线性范围为0.25~5μmol/L(Ip=0.14cNO-2+0.01,r2=0.993 5),灵敏度为143.50μA·L·mmol-1,方法检出限低至0.08μmol/L。该PRh B/CNTs/GCE具有良好的选择性、抗干扰能力和稳定性,成功应用于实际样品中亚硝酸盐的定量测定,加标回收率为98.3%~102.0%。  相似文献   

10.
多巴胺(DA)是人类神经系统的神经递质之一,也是诊断多种神经疾病的重要生物标志物,因此,快速准确地检测DA浓度受到广泛关注。本文以普鲁士蓝(PB)为前体制备了一种多孔Fe-N-C纳米颗粒簇,将其修饰在玻碳电极(GCE)表面,发现该修饰电极在使用线性扫描伏安法(LSV)和差分脉冲伏安法(DPV)时能够有效地降低尿酸(UA)和抗坏血酸(AA)的电化学氧化响应,而不影响DA的电化学氧化反应,并能够将三者的氧化峰有效分开,从而可以实现对DA的选择性电化学分析。研究结果表明,在含有高浓度的UA(100μmol/L)和AA(100μmol/L)的DA混合溶液中使用LSV检测DA,分段线性范围可以达到5~100μmol/L和100~700μmol/L,灵敏度分别为8.32×10~(-2)和3.44×10~(-2)A·(mol/L)~(-1),检测下限为5μmol/L。  相似文献   

11.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

12.
采用一步电化学共还原的方法将纳米金(AuNPs)、Nafion、电化学还原石墨烯(ERGO)修饰到玻碳电极(GCE)表面,制成修饰电极AuNPs/Nafion/ERGO/GCE。以扫描电镜对其进行表征,用循环伏安法和微分脉冲伏安法研究对苯二酚在该修饰电极上的电催化行为。优化了实验参数,对苯二酚在2.0~100μmol/L及100~800μmol/L浓度范围内与其氧化峰电流呈良好的线性关系,检出限为0.3μmol/L。用该修饰电极成功地进行了实际水样中对苯二酚含量的测定。  相似文献   

13.
采用循环伏安法将纳米金电沉积于玻碳电极表面,制备了纳米金修饰玻碳电极(NG/GCE).在pH3.29的Britton-Robinson(B-R)缓冲溶液中,用循环伏安法研究了芦丁在NG/GCE上的电化学行为.结果表明,NG/GCE对芦丁的氧化还原反应有良好的电催化作用.用方波伏安法测得芦丁的还原峰电流与其浓度在2.0×10-8~2.0×10-6mol/L范围内呈线性关系,检出限为1.0×10-8mol/L(S/N=3).  相似文献   

14.
采用电化学还原技术,通过一步电沉积制备了石墨烯-金纳米粒子复合膜修饰电极(ERGO-Au/GCE).采用透射电子显微镜(TEM)和循环伏安(CV)法对修饰电极进行了表征,并研究了双酚A(BPA)在该修饰电极上的电化学行为.结果表明,所制备的复合物修饰电极对双酚A有明显的电催化效果.在p H=6.0的磷酸盐缓冲溶液中,双酚A在0.3~1.0 V扫描电位范围内有1个不可逆的氧化还原峰出现.在优化的条件下,双酚A的浓度在3.00×10-8~1.30×10-5mol/L范围内与其氧化峰电流呈线性关系,检出限为1.0×10-8mol/L(S/N=3).将该修饰电极用于饮用水和塑料制品中双酚A含量的测定,回收率为96.4%~103.5%.  相似文献   

15.
将超声分散的氧化石墨烯(GO)悬浮液滴涂于玻碳电极(GCE)表面,制备成GO/GCE,并用扫描电子显微镜(SEM)和电化学阻抗谱(EIS)对GO/GCE进行表征,利用差分脉冲伏安法(DPV)、循环伏安法(CV)对多巴胺(DA)和尿酸(UA)进行了电化学测定。研究了pH对DA和UA电化学行为的影响并计算相关的动力学参数。结果表明:该修饰电极对DA和UA的氧化还原反应具有良好的电化学催化作用,在1.0~98.0μmol/L和0.5~90.0μmol/L范围内峰电流与DA和UA浓度呈良好的线性关系,检出限分别为0.50μmol/L和0.25μmol/L。而且可以在抗坏血酸(AA)共存下同时测定DA和UA。该传感器具有良好的选择性与稳定性,有望应用于DA和UA的同时测定。  相似文献   

16.
制备了纳米氧化铜粒子修饰玻碳电极(Nano-Cu O/GCE),采用扫描电镜进行表征,并研究了双酚A在该电极上的电化学行为。结果表明,该电极表面纳米氧化铜粒子分布均匀,对双酚A有较强的电催化活性。在优化条件下,采用差分脉冲伏安法测定双酚A的线性范围为0.2~4.0μmol/L,检出限为50 nmol/L,并已用于实际样品的测定。  相似文献   

17.
制备了氧化钕-单壁碳纳米管修饰玻碳电极(Nd2O3-SWNTs/GCE)。采用循环伏安法(CV)探究了鸟嘌呤(G)和腺嘌呤(A)在该修饰电极上的电化学行为。结果表明:该修饰电极对G和A的氧化具有良好的电催化能力。在最佳条件下,用示差脉冲伏安法(DPV)对G和A进行检测,其氧化峰电流与浓度分别在10~50μmol/L范围内呈现良好的线性关系,检出限(S/N=3)均为5.0×10-8 mol/L。该修饰电极可以用来同时测定DNA中的G和A。  相似文献   

18.
研究了双酚A(BPA)在十二烷基硫酸钠(SDS)现场自组装膜与离子液体N-丁基吡啶夫氟磷酸盐([ bupy]PF6)复合修饰碳糊电极(SDS-[ bupy]PF6/CPE)上的电催化氧化行为和电化学动力学性质.实验结果表明,在SDS-[ bupy]PF6/CPE上BPA发生了一受扩散控制的不可逆电化学氧化过程,用循环伏安(CV)法和计时电流(CA)法测得BPA在SDS-[bupy]PF6/CPE上的电极反应过程动力学参数.用方波伏安(SWV)法测得BPA氧化峰电流(Ipa)与其浓度在1.0×10-5~ 1.0×10-3 mol/L范围内呈良好的线性关系,线性方程为Ipa(μA) =2.635 +51.30c( 10-3 mol/L),r =0.998 1,检测限(S/N=3)为3.01×10-7 mol/L,同时运用SWV法对湖水样品中双酚A的含量进行了电化学定量测定.  相似文献   

19.
本文制备了氧化石墨烯-金纳米棒复合物(GO-GNRs).利用滴涂法制备了修饰电极(GO-GNRs/GCE),通过循环伏安法,还原了GO-GNRs复合物中的GO,制得电化学还原的石墨烯-金纳米棒修饰电极(ERGO-GNRs/GCE).研究了酒石黄在不同电极上的电流响应,结果表明,ERGO-GNRs/GCE对酒石黄的氧化有很好的电催化作用,其浓度在0.05~6.0μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为15 nmol/L.利用ERGO-GNRs/GCE可完成样品中酒石黄含量的测定.  相似文献   

20.
用循环伏安法(CV),计时库仑法(CC),计时电流法(CA),线性扫描伏安法(LSV)及电流-时间曲线研究了甲氧苄啶(trimethoprim, TMP)在碳纳米管-Nafion修饰电极(MWCNTs-Nafion/GCE)上的电化学行为,电化学动力学性质以及电分析方法.结果表明,TMP在GCE上有一个极弱的氧化峰,而在MWCNTs-Nafion/GCE上出现一个敏锐的氧化峰,表明MWCNTs-Nafion/GCE对TMP电化学氧化具有良好的催化作用.在扫描速度为10~800 mV/s时其氧化峰电流与扫描速度平方根(v1/2)呈良好线性关系,表明TMP在MWCNTs-Nafion/GCE上的伏安行为是受扩散控制的电化学过程.TMP在MWCNTs-Nafion/GCE上氧化峰电流与浓度在5.0×10-6~1.0×10-3 mol/L范围内呈良好线性关系;检出限为6.6×10-7 mol/L;RSD在0.75%~1 69%之间;加标回收率在98.1%~101.1%之间.本方法简便快捷,测定结果令人满意,可用于TMP的电化学定量测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号