首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the dual-gated silicene, we have evaluated theoretically the spin-dependent transport in lateral resonant tunneling structure. By aligning the completely valley-polarized beam with spin-resolved well state in concerned structure, large spin polarization can be expected owing to spin-dependent resonant tunneling mechanism. Under the gate electric field modulation, the forming quantum well state can be externally manipulated, triggering further the emergence of externally-controllable spin polarization. Importantly, integrating the considered structure with a proper valley-filter, which might be constructed from valley-contrasting physics as that in graphene valleytronics, completely-polarized spin beam can also be attained without the assistance of ferromagnetic component, providing thus some profitable strategies to develop nonmagnetic spintronic devices residing on silicene.  相似文献   

2.
Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.  相似文献   

3.
The electronic structure and quantum transport of a zigzag monolayer molybdenum disulfide (MoS2) nanoribbon are investigated using a six-band tight-binding model. For metallic edge modes, considering both an intrinsic spin–orbit coupling and local exchange field effects, spin degeneracy and spin inversion symmetry are broken and spin selective transport is possible. Our model is a three-terminal field effect transistor with a circular-shaped gate voltage in the middle of scattering region. One terminal measures the top edge current and the other measures the bottom edge current separately. By controlling the circular gate voltage, each terminal can detect a totally spin-polarized edge current. The radius of the circular gate and the strength of the exchange field are important, because the former determines the size of the channel in both S-terminated (top) and Mo-terminated (bottom) edges and the latter is strongly related to unbalancing of the density of spin states. The results presented here suggest that it should be possible to construct spin filters using implanted MoS2 nanoribbons.  相似文献   

4.
We study the spin-polarized transport induced by photoirradiation in zigzag silicene nanosystem, based on tight-binding approach, Green's function method and Landauer–Büttiker formula. By applying strong circular polarized light, silicene nanosystem can be transformed into a quantum Hall insulator, where the spin-down subband is gapped while the spin-up subband persists gapless edge state. Therefore, the dc conductance is dominated by the spin-up electrons, and the spin polarization can reach almost 100% around the Fermi energy. The spatial-resolved local density of states confirm that the spin-up electrons transport at two edges of the nanosystem in opposite current directions. Furthermore, because of the topological origin of the edge state, the spin-polarized transport is very robust against the size change of the nanosystem.  相似文献   

5.
By first-principles calculations, we propose three heterojunction nanodevices based on zigzag silicene nanoribbons with different edge-hydrogenated topological line defects. The devices all present excellent spin-filtering properties with 100% spin polarization as well as remarkable rectifying effect (with rectification ratio around 102) and negative differential resistance behaviors. Our findings shed new light on the design of silicon-based nanodevices with intriguing spintronic applications.  相似文献   

6.
Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 Å, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level EF in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ3n > Δ3n+1 > Δ3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.  相似文献   

7.
侯海燕  姚慧  李志坚  聂一行 《物理学报》2018,67(8):86801-086801
研究了基于硅烯的静电势超晶格、铁磁超晶格、反铁磁超晶格中谷极化、自旋极化以及赝自旋极化的输运性质,分析了铁磁交换场、反铁磁交换场以及化学势对输运性质的影响,讨论了电场对谷极化、自旋极化以及赝自旋极化的调控作用.结果表明:当3种超晶格的晶格数达到10以上时,在硅烯超晶格中很容易实现100%的谷极化、自旋极化和赝自旋极化,而且通过调节超晶格上的外加电场可以使极化方向发生翻转,从而在硅烯超晶格中实现外电场对谷自由度、自旋自由度以及赝自旋自由度的操控.  相似文献   

8.
M. Idrish Miah 《Optik》2011,122(20):1811-1813
Spin polarization in semiconductors was investigated by pump-probe measurements, where the transmissions of the samples were monitored with probe pulses with same and opposite circular polarizations. The spin polarization as a function of the pump-probe delay was estimated, and the polarization was found to decay in a sub-ns timescale. It was also found that the polarization depends strongly on photon energy of the pump beam. The pumping energy dependence of the spin polarization was discussed based on the inter-band transition probabilities.  相似文献   

9.
The tight-binding model including spin–orbit coupling is used to study electronic and optical properties of armchair silicene nanoribbons (ASiNRs) in electric fields. Perpendicular electric field monotonically increases band-gap, the DOS, and absorption frequency and strength. It does not change spin-degeneracy, edge-states, and optical selection rule. However, parallel electric field strongly modulates energy dispersions resulting in oscillatory band-gaps, shift in edge-states, and destruction of spin-degeneracy. It induces more transition channels and constructs new selection rules that exhibits richer optical spectra. Modulations of electronic and optical properties of ASiNRs have strong dependence on the direction of electric field and nanoribbon's geometry.  相似文献   

10.
We investigate the electron transport through one double-helical molecule with four terminals, by considering one terminal to be the source and others to be the drains. It is found that notable spin polarizations simultaneously occur during the processes of intra-chain electron tunneling and inter-chain electron reflection. More importantly, in these two processes, the spin polarizations always show similar strengths and opposite directions. Based on these results, we consider that the spin polarization and spin separation can be co-realized in this system.  相似文献   

11.
In the present work the dynamical behavior of π-electronic spin in graphene is investigated. The π-electron is under the influence of a normal uniform magnetic field and the Rashba spin–orbit coupling. Introducing a Casimir operator, we show that the governing Hamiltonian and, consequently, the time-evolution matrix is block-diagonal. We then proceed to calculate the temporal behavior of different spin components, when it is initially in-plane polarized. Our calculations show that the spin is dynamically polarized in a plane normal to the graphene sheet and follows the patterns of collapse-revivals. The dependence of amplitudes as well as the collapse-revivals’ periods on the external field and the Rashba spin–orbit coupling is also reported.  相似文献   

12.
We investigate the electronic transport in a silicene-based ferromagnetic metal/ferromagnetic insulator/ferromagnetic metal tunnel junction. The results show that the valley and spin transports are strongly dependent on local application of a vertical electric field and effective magnetization configurations of the ferromagnetic layers. In particular, it is found that the fully valley and spin polarized currents can be realized by tuning the external electric field. Furthermore, we also demonstrate that the tunneling magnetoresistance ratio in such a full magnetic junction of silicene is very sensitive to the electric field modulation.  相似文献   

13.
To investigate charge and spin dependent conductance properties of Phosphorus doped zigzag silicene nanoribbons (ZSiNRs), we utilize recursive Green's function method and Landauer-Büttiker formalism. Our calculations are performed in the absence and presence of exchange magnetic fields with both parallel and antiparallel configurations. Considering a supperlattice of Phosphorus substituents in a periodic distribution at the edge of nanoribbon, the effect of increasing number of dopants and period of the distribution on transport properties are studied. It is found that transport properties of doped ZSiNRs vary with doping concentration according to being odd or even of number of dopants. For parallel configuration, doped ZSiNR with various concentrations works as a controllable spin filter with Fermi energy. Increasing doping concentration leads to increasing size of conductance gap and improvement of controlling quality of spin-filtering property while increasing period of Phosphorus atomic distribution has destructive effect on size of conductance gap and destroys spin-filtering property. Moreover, we show that although the same results are obtained for transport properties of doped ZSiNR with various concentrations of Phosphorus atoms in presence of antiparallel exchange magnetic fields, a completely controllable spin-filtering property cannot be achieved by Fermi energy changes.  相似文献   

14.
By the method of capacitance spectroscopy and of magnetotransport we have investigated the and fractional-quantum-Hall-effect (FQHE) states in gated GaAs AlGaAs heterojunctions with tuned electron areal density. Our experimental results confirm the theoretical prediction of the fractional quasiparticle charge in the FQHE state and of the existence of spin-aligned quasiholes and spin-reversed quasielectrons in the fully spin-polarized FQHE state.  相似文献   

15.
Under the influence of the external transverse electric fields, the effective mass and optical properties of armchair-edge silicene nanoribbons (ASiNRs) are investigated using the first-principles based on density functional theory (DFT). The results show that, comparing without the external transverse electric fields, the band gaps decrease monotonously, and the effective masses of the electrons and holes change non-monotonously with the absolute value of the electric fields, respectively. The total density of states (DOS) shows that, under the external electric fields, 9-ASiNR exhibits p-type semiconductor characters. Because of the obvious difference of the imaginary parts between the//x and//y directions, 9-ASiNR shows an optical anisotropy. In//x direction, the peaks of the dielectric function have evident red shift which are all associated with the electrons transition between Si 3p orbit and Si 3p, 3s orbits.  相似文献   

16.
Silicene and related buckled materials are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit coupling and the buckled structure. These materials have potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit coupling. We present a theoretical realization of quantum capacitance which has advantages over the scattering problems of traditional transport measurements. We derive and discuss quantum capacitance as a function of the Fermi energy and temperature taking into account electron–hole puddles through a Gaussian broadening distribution. Our predicted results are very exciting and pave the way for future spintronic and valleytronic devices.  相似文献   

17.
《中国物理 B》2021,30(10):107302-107302
We study the Goos–H?nchen-like shift of single silicene barrier under the external perpendicular electric field, offresonant circularly polarized light and the exchange field modulation using the stationary-phase method. The results show that the Goos–H?nchen-like shift of silicene resulting from the external perpendicular electric field does not have the characteristics of spin or valley polarization, while that from off-resonant circularly polarized light or the exchange field is spin-polarized. More importantly, the combined effect of the external perpendicular electric field and the exchange field or off-resonant circularly polarized light can cause the Goos–H?nchen-like shift of the system to be spin and valley polarized.It is particularly worth noting that when the three modulations are considered at the same time, as the exchange field changes, the system will have a positive or negative Goos–H?nchen-like shift.  相似文献   

18.
An asymmetrically coupled double quantum dot (QD) system consisting of adjacent CdSe and CdZnMnSe QD layers in a ZnSe matrix was investigated using polarization-selective magneto-photoluminescence (PL). Two well-resolved PL peaks are observed corresponding, respectively, to the CdSe and the CdZnMnSe QDs. The peaks exhibit significant change in the intensity and energy position when a magnetic field is applied. The enhancement of the degree of σ circular polarization emitted by the non-magnetic CdSe QDs is observed in the double layer system, as compared to that observed in CdSe QDs without the influence of neighboring CdZnMnSe QDs. This behavior was discussed in terms of antiferromagnetic interaction between carrier spins localized in pairs of CdSe and CdZnMnSe QDs that are electronically coupled.  相似文献   

19.
The authors investigate the spin-resolved transport through an asymmetrical magnetic graphene superlattice (MGS) consisting of the periodic barriers with abnormal one in height. To quantitatively depict the asymmetrical MGS, an asymmetry factor has been introduced to measure the height change of the abnormal barrier. It is shown that the spin filter effect is strongly enhanced by the barrier asymmetry both in the Klein and the classical tunneling regimes. In the presence of abnormal barrier, the conductance with certain spin direction is suppressed with respect to different tunneling regimes, and thus high spin polarization with opposite sign can be achieved.  相似文献   

20.
A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号