首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Yinxiang Li  Bin Chen 《Physics letters. A》2010,374(34):3514-3519
By using the Schwinger-boson mean-field theory, the Heisenberg ferrimagnetic spin chain with the single-ion anisotropy D is explored. Based on the effect of the single-ion anisotropy D, we obtain four branches of the low-lying excitation and calculate the anisotropy dependence of spin reduction and the longitudinal correlation at zero temperature. We also discuss the free energy, magnetic susceptibility and specific heat at finite temperature with different anisotropy D.  相似文献   

2.
李殷翔  陈斌 《中国物理 B》2015,24(2):27502-027502
We use the Schwinger-boson approach to study the anisotropy ferrimagnetic spin-(1/2,1) chain with bond alternation.Based on the effect of bond alternation δ,we obtain energy gap,free energy,and specific heat,respectively.The specific heat with larger bond alternation(δ 0.7) displays a peak at low temperature.Based on the effect of XXZ anisotropy parameter δ,we present excited spectrums,free energy,and specific heat,respectively.  相似文献   

3.
4.
Electronic energy band structure of deformed armchair graphene nanoribbons with bond alternation is studied by the tight-binding approximation. In the presence of bond alternation, all armchair graphene nanoribbons become semiconducting with small band gap opened at center of the Brillouin zone. Under tensional strain, armchair graphene nanoribbons can become metallic at the critical values of deformation and we can control the band gap of nanoribbon by its strain.  相似文献   

5.
The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model.  相似文献   

6.
The alternating-bond mixed spin-1/2 and spin-1 Ising chain with both longitudinal and transverse single-ion anisotropies are solved exactly by means of a mapping of the spin-1/2 transverse Ising chain and the Jordan-Wigner transformation. The ground state quantities are strongly dependent on the model Hamiltonian parameters J1, J2, Dx and Dz. We obtain the quasi-particles' spectra Λk, the dimerization gap Δd, the minimal energy Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole and the ground state energy Eg. The phase diagram of the ground state is also given. The results show that the alternating bond just quantitatively changes the ground state properties; no matter the nearest-neighbor exchange interactions J1 and J2 are equal or not, when Dz≥0 for any finite value of Dx, there is no quantum critical point and the ground state is always in a spin ordered phase.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号