首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The hydrogen storage capacity of M-decorated (M = Li and B) 2D beryllium hydride is investigated using first-principles calculations based on density functional theory. The Li and B atoms were calculated to be successfully and chemically decorated on the Surface of the α-BeH2 monolayer with a large binding energy of 2.41 and 4.45eV/atom. The absolute value was higher than the cohesive energy of Li and B bulk (1.68, 5.81eV/atom). Hence, the Li and B atoms are strongly bound on the beryllium hydride monolayer without clustering. Our findings show that the hydrogen molecule interacted weakly with B/α-BeH2(B-decorated beryllium hydride monolayer) with a low adsorption energy of only 0.0226 eV/H2 but was strongly adsorbed on the introduced active site of the Li atom in the decorated BeH2 with an improved adsorption energy of 0.472 eV/H2. Based on density functional theory, the gravimetric density of 28H2/8li/α-BeH2) could reach 14.5 wt.% higher than DOE's target of 6.5 wt. % (the criteria of the United States Department of Energy). Therefore, our research indicates that the Li-decorated beryllium hydride monolayer could be a candidate for further investigation as an alternative material for hydrogen storage.  相似文献   

2.
Two-dimensional (2D) materials can be regarded as potential hydrogen storage candidates because of their splendid chemical stability and high specific surface area. Recently, a new dumbbell-like carbon nitride (C4N) monolayer with orbital hybridization of sp3 is reported. Motivated from the above exploration, the hydrogen adsorption properties of Li-decorated C4N monolayer are comprehensively investigated via first principles calculations based on the density functional theory (DFT). It is found that the Dirac points and Dirac cones exists in the Brillouin zone (BZ) from the calculated electronic structure and indicates the C4N can be used as an excellent topological material. Also, the calculated phonon spectra demonstrate that the C4N monolayer owns a strong stability. Moreover, the calculated binding energy of decorated Li atom is bigger than its cohesive energy and results in Li atoms disperse over the surface of C4N monolayer uniformly without clustering. In addition, the Li8C4N complex can capture up to 24H2 molecules with an optimal hydrogen adsorption energy of −0.281 eV/H2 and achieves the hydrogen storage density of 8.0 wt%. The ab initio molecular dynamics (AIMD) simulations suggest that the H2 molecules can be desorbed quickly at 300 K. This study reveals that Li-decorated C4N monolayer can be served as a promising hydrogen storage material.  相似文献   

3.
Hydrogen storage properties of co-functionalized 2D GaS monolayer have been systematically investigated by first-principles calculations. The strength of the binding energy of hydrogen (H2) molecules to the pristine GaS surface shows the physisorption interactions. Co-functionalized GaS sheet by Li, Na, K and Ca atoms enhanced the capacity of binding energies of hydrogen and strength of hydrogen storage considerably. Besides, DFT calculations show that there is no structural deformation during H2 desorption from co-functionalized GaS surface. The binding energies of per H2 molecules is found to be 0.077 eV for pristine GaS surface and 0.064 eV–0.37 eV with the co-functionalization of GaS surface. Additionally, in the presence of applied external electric field enhanced the strength of binding energies and it is found to be 0.09 eV/H2 for pristine GaS case and 0.19 eV/H2 to 0.38 eV/H2 for co-functionalized GaS surface. Among the studied GaS monolayer is found to be the superior candidate for hydrogen storage purposes. The theoretical studies suggest that the electronic properties of the 2D GaS monolayer show the electrostatic behavior of hydrogen molecules which confirms by the interactions between adatoms and hydrogen molecules before and after hydrogen adsorption.  相似文献   

4.
Hydrogen adsorption over TiFe surface and doped TiFe surface is investigated within density functional theory. Surface energy calculations confirm that TiFe (111) surface has the minimum value among three low index crystallographic surfaces, (100), (111) and (110). The (111) TiFe surface has two different terminations one with Fe and the other with Ti. Here both the (111) surfaces with different terminations are considered for doping with all the 3-d transition metal atoms from Sc to Zn. Furthermore, the molecular hydrogen adsorption over all the doped surfaces is investigated. V was found to be the most suitable element for doping in Fe terminated (111) surface. V doping in Fe terminated surface enhanced Eads by 0.6 eV from ?3.30 eV (undoped) to ?3.90 eV after doping. Whereas in case of Ti terminated surface Co was found to be the best element for doping as it enhanced Eads by ~0.5 eV from ?2.64 eV (undoped) to ?3.15 eV after doping. A significant decrease in d-band width from 1.95 eV to 1.22 eV in case of Co substitution in Ti terminated surface and from 2.42 eV to 1.33 eV in case of V substitution in Fe terminated surface enhances the hydrogen adsorption in TiFe (111) surface. Thus, even using a very small amount of dopant can influence the hydrogen adsorption properties of TiFe alloy.  相似文献   

5.
Hydrogen, as a clean alternative to fossil fuels, has received much attention in recent years. But its utilizing requires to overcome storage problems. Here, we investigated the hydrogen adsorption behavior of graphenylene (GPY), a 2D carbon nanostructure, and Sc, Fe and Ti transition metal (TM) decorated GPY by spin-polarized DFT calculations. For TM-decoration of GPY, seven different sites and various distances from carbon sheet were investigated, carefully. Structural and electronic properties of the structures, adsorption energies, band gap values, and the most stable configurations were considered and discussed. Results showed that 6-membered ring (H2 site) is the best site for Sc, Fe, and Ti-decoration and corresponding Eads was −3.95, −2.66, and −3.65 eV, respectively. Also, pristine GPY and Sc and Ti-decorated GPY have not magnetic character, unlike Fe-GPY. As well, entrance of Sc, Fe and Ti atoms in H2 site of the GPY structure causes its band gap increases from 0.033 eV to of 0.491, 0.080, and 0.372 eV, respectively. Eads of the H2 molecule onto pristine GPY is low (−0.160 eV), and must be improved for practical hydrogen storage applications. Sc, Fe, and Ti-decoration improves it about 2.23, 5.69 and 3.63 times. Because of this improvement, we could store up to 20H2 molecules on TM-decorated GPY systems. These results indicate that TM-decorated GPY can be a suitable option for H2 storage applications in the future.  相似文献   

6.
The mechanism of hydrogen molecule adsorption on 2D buckled bismuthene (b-Bi) monolayer decorated with alkali metal atoms was studied using density functional theory based first principles calculations. The decorated atoms Li, Na and K exhibited distribution on surface of b-Bi monolayer with increasing binding energy of 2.6 eV, 2.9 eV and 3.6 eV respectively. The adsorption of H2 molecule on the slabs appeared stable which was further improved upon inclusion of van der Waals interactions. The adsorption behaviour of H2 molecules on the decorated slabs is physisorption whereas the slabs were able to bind up to five H2 molecules. The average adsorption energy per H2 molecules are in range of 0.1–0.2 eV which is good for practical applications. The molecular dynamics simulation also confirmed the thermodynamic stabilities of five H2 molecules adsorbed on the decorated slabs. The storage capacity values are found 2.24 wt %, 2.1 wt %, and 2 wt %, for respective cases of Li, Na and K atoms decorated b-Bi. The analysis of the adsorbed cases pointed to electrostatic interaction of Li and H2 molecule. The adsorption energies, binding energies, charge analysis, structural stability, density of states, and hydrogen adsorption percentage specifies that the decorated b-Bi may serve as an efficient hydrogen storage material and could be an effective medium to interact with hydrogen molecules at room temperature.  相似文献   

7.
Based on first−principles calculations, we investigate the possibility of the two-dimensional porous C9N4 material as for hydrogen storage, and find that the adsorption energy of H2 molecules on the pristine C9N4 is too weak to meet the requirements of hydrogen storage, whereas the adsorption on the Li−decorated sheet is relatively moderate. Each C9N4 unit cell can incorporate 6 Li atoms, of which 3 Li atoms are located above the intrinsic hole and the others are below. The unit cell can hold 14 hydrogen molecules with an average adsorption energy of −0.12 eV, which meets the reversible storage condition of hydrogen, and the gravity density reaches 7.04 wt%. Particularly, 6Li@C9N4 maintains excellent H2 storage performance under a tensile strain within 2%. The ab initio MD simulations performed at 300 K show that all 14 H2 molecules remained on the double sides of 6Li@C9N4 in the absence and presence of strain. Therefore, we predict that Li−modified C9N4 could be a potential material with excellent ductility for hydrogen storage at room temperature.  相似文献   

8.
Hydrogen storage properties of Li-decorated graphene oxides containing epoxy and hydroxyl groups are studied by using density functional theory. The Li atoms form Li4O/Li3OH clusters and are anchored strongly on the graphene surface with binding energies of −3.20 and −2.84 eV. The clusters transfer electrons to the graphene substrate, and the Li atoms exist as Li+ cations with strong adsorption ability for H2 molecules. Each Li atom can adsorb at least 2H2 molecules with adsorption energies greater than −0.20 eV/H2. The hydrogen storage properties of Li-decorated graphene at different oxidation degrees are studied. The computations show that the adsorption energy of H2 is −0.22 eV/H2 and the hydrogen storage capacity is 6.04 wt% at the oxidation ratio O/C = 1/16. When the O/C ratio is 1:8, the storage capacity reaches 10.26 wt% and the adsorption energy is −0.15 eV/H2. These results suggest that reversible hydrogen storage with high recycling capacities at ambient temperature can be realized through light-metal decoration on reduced graphene oxides.  相似文献   

9.
Self-consistent ab initio calculations carried out using full potential augmented plane wave (FP-LAPW) method were performed to study the electronic, optical and photocatalytic properties of CsBrO3 and Fe doped CsBrO3. Ground state and formation energy for CsBrO3-perovskite are calculated and analyzed. The magnetic moment of Cs, Br, Fe and O are calculated in CsBrO3 and CsBr0.34Fe0.66O3. The band structure, total and partial density of states (DOS) diagrams are discussed.The CsBrO3 have semiconductor character with a wide direct gap. The value of gap energy is 4.24 eV of CsBrO3. Fe doped in CsBrO3 lead to band gap narrowing 1.02 eV for spin up and 1.434 eV for spin dn , which enhances the visible light catalytic activity. The conduction band minimum (CBM) and valence band maximum (VBM) potentials vs. normal hydrogen electrode (NHE) are calculated and analyzed. The general profiles of the optical spectra and the optical properties, including the real and imaginary part of dielectric function, reflectivity, absorption and optical conductivity are discussed. Our results predict that Fe doped CsBrO3 is a promising visible light photo-catalyst for hydrogen production by water splitting.  相似文献   

10.
Ab initio studies were conducted to evaluate the performance of hydrogen storage by Mg-decorated graphite carbon nitride (g-CN, heptazine structure). In our calculations, we found that each unit of this material can accommodate one Mg atom. Partial charges from Mg were transferred to the pristine material, making itself more electropositive. This is favorable for hydrogen storage, as the adsorbed H2 molecules can be easily polarized, and the electrostatic interactions can be enhanced. The configurations of the Mg-decorated g-CN with multiple adsorbed H2 molecules were presented in this study, and the related adsorption mechanisms were also discussed in details. Each unit can adsorb at most 7 H2 molecules with adsorption energies ranging from −0.276 eV to −0.130 eV. In addition, besides Mg, we also noticed that the nitrogen atoms also perform well in hydrogen adsorption. For this novel material, its highest capacity of hydrogen storage can reach to 7.8 wt%, highly surpassing the target value of 5.5 wt% set by the U.S. department of energy (DOE)[1]. The computational results provided in this study indicates a promising prospect for alkali metal functionalized 2D materials in energy storage; and through decent explorations, the performance of this class of materials can be largely improved.  相似文献   

11.
The design and development of low-cost, abundant reserves, high catalytic activity and durability bifunctional electrocatalysts for water splitting are of great significance. Here, simple hydrothermal and hydrogen reduction methods were used to fabricate a uniform distribution of Fe-doped MoO2/MoO3 sheets with abundant oxygen vacancies and heterojunctions on etched nickel foam (ENF). The Fe– MoO2/MoO3/ENF exhibited a small overpotential of 36 mV at 10 mA cm−2 for hydrogen evolution reaction (HER), an excellent oxygen evolution reaction (OER) overpotential of 310 mV at 100 mA cm−2 and outstanding stabilities of 95 h and 120 h for the HER and OER, respectively. As both cathode and anode catalysts, the heterogeneously structured Fe– MoO2/MoO3/ENF required a low cell voltage of 1.57 V at 10 mA cm−2. Density functional theory (DFT) calculations show that Fe doping and MoO2/MoO3 heterojunctions can significantly reduce the band gap of the electrode, accelerate electron transport and reduce the potential barrier for water splitting. This work provides a new approach for designing metal ion doping and heterostructure formation that may be adapted to transition metal oxides for water splitting.  相似文献   

12.
The potential application of pristine Be2N6 monolayer and Li-decorated Be2N6 monolayer for hydrogen storage is researched by using periodic DFT calculations. Based on the obtained results, the Be2N6 monolayer gets adsorb up to seven H2 molecules with an average binding energy of 0.099 eV/H2 which is close to the threshold energy of 0.1 eV required for practical applications. Decoration of the Be2N6 monolayer with lithium atom significantly improves the hydrogen storage ability of the desired monolayer compared to that of the pristine Be2N6 monolayer. This can be attributed to the polarization of H2 molecules induced by the charge transfer from Li atoms to the Be2N6 monolayer. Decoration of Be2N6 monolayer with two lithium atoms gives a promising medium that can hold up to eight H2 molecules with average adsorption energy of 0.198 eV/H2 and hydrogen uptake capacities of 12.12 wt%. The obtained hydrogen uptake capacity of 2Li/Be2N6 monolayer is much higher than the target set by the U.S. Department of Energy (5.5 wt% by 2020). Based on the van't Hoff equation, it is inferred that hydrogen desorption can occur at TD = 254 K for 2Li/Be2N6 (8H2) system which is close to ambient conditions. This is a remarkable result indicating important practical applications of 2Li/Be2N6 medium for hydrogen storage purposes.  相似文献   

13.
Electrochemical hydrogen evolution by molybdenum dioxide and molybdenum sub-oxides has gathered much attention owing to their excellent stability and high catalytic activity. However, the reduction of higher valent molybdenum oxides to lower valent molybdenum oxides using conventional chemical process is a challenging issue. Here, supercritical fluid (SCF) and hydrothermal assisted direct synthesis of carbon doped lower valent molybdenum oxides i.e., MoO2/MoO3-x using ammonium heptamolybdate tetrahydrate and phyllanthus reticulatus fruit extract is demonstrated. The phyllanthus reticulatus fruit extract was used as natural reducing agent and it facilitated the reduction, nucleation and surface capping of lower valent molybdenum oxides. XRD and XPS analysis confirmed the phase pure monoclinic MoO2 nanostructures formation with mildly oxidized molybdenum suboxides (MoO3-x) thin layer on the surface. The partial conversion of phyllanthus reticulatus fruit extract to carbon nanostructures that were doped in MoO2/MoO3-x nanostructures was further confirmed using Raman spectroscopic analysis. The carbon doped MoO2/MoO3-x nanostructures prepared by SCF and hydrothermal method exhibited superior electrochemical hydrogen evolution reaction with the low overpotential of 160 and 207 mV at a current density of 10 mA cm−2, respectively.  相似文献   

14.
Employing first-principles calculations, we have studied the structure, stability and hydrogen storage efficiency of pristine and defective BC3 and C3N monolayer functionalized by a variety of single metal adatoms. It is found that single Sc adatom, acting as an optimal dopant on perfect BC3 monolayer, is able to adsorb up to nine H2 molecules as strongly as around 0.24 eV/H2, which allows for a hydrogen storage capacity of 7.19 wt% for Sc atoms stably adsorbing on double sides of BC3 monolayer with eighteen H2 molecules (18H2@2Sc/BC3). Moreover, the desorption temperature and thermodynamical stability of multiple H2 adsorbed Sc-decorated BC3 sheet have been addressed and the saturate configuration of 18H2@2Sc/BC3 is predicted to be stable at mild temperatures and pressures, i.e. less than 250 K at 1 bar, or larger than 24 bar at room temperature. This study indicates that the Sc-decorated BC3 monolayer could be a potential H2 storage candidate, and provides an instructive guidance for designing metal-functionalized carbon-based sheets in hydrogen storage.  相似文献   

15.
The most ideal substitute for Pt/C to catalyze the oxygen reduction reaction (ORR) is the transition metal and nitrogen co-doped carbon-based material (TM-N-C). However, large particles with low catalytic activity are formed easily for the transition metals during high-temperature carbonization. Herein, PAN nanofibers uniformly distributed with FeCl3 were coated with SiO2 and then carbonized to obtain Fe–N–Si tri-doped carbon nanofibers catalyst (Fe–N–Si-CNFs). The SiO2 can further anchor the Fe atoms, thus preventing agglomeration during the carbonization process. Meanwhile, Si atoms have been doped in CNFs during this process, which is conducive to the further improvement of catalytic performance. The Fe–N–Si-CNFs catalyst has a 3D network structure and a large specific surface area (809.3 m2 g−1), which contributes to catalyzing the ORR. In alkaline media, Fe–N–Si-CNFs exhibits superior catalytic performance (E1/2 = 0.86 V vs. RHE) and higher stability (9.6% activity attenuation after 20000s) than Pt/C catalyst (20 wt%).  相似文献   

16.
Two-dimensional (2D) B2O monolayer is considered as a potential hydrogen storage material owing to its lower mass density and high surface-to-volume ratio. The binding between H2 molecules and B2O monolayer proceeds through physisorption and the interaction is very weak, it is important to improve it through appropriate materials design. In this work, based on density functional theory (DFT) calculations, we have investigated the hydrogen storage properties of Lithium (Li) functionalized B2O monolayer. The B2O monolayer decorated by Li atoms can effectively improve the hydrogen storage capacity. It is found that each Li atom on B2O monolayer can adsorb up to four H2 molecules with a desirable average adsorption energy (Eave) of 0.18 eV/H2. In the case of fully loaded, forming B32O16Li9H72 compound, the hydrogen storage density is up to 9.8 wt%. Additionally, ab initio molecular dynamics (AIMD) calculations results show that Li-decorated B2O monolayer has good reversible adsorption performance for H2 molecules. Furthermore, the Bader charge and density of states (DOS) analysis demonstrate H2 molecules are physically absorbed on the Li atoms via the electrostatic interactions. This study suggests that Li-decorated B2O monolayer can be a promising hydrogen storage material.  相似文献   

17.
Prevention of hydrogen (H) penetration into passive films and steels plays a vital role in lowering hydrogen damage. This work reports effects of atom (Al, Cr, or Ni) doping on hydrogen adsorption on the α-Fe2O3 (001) thin films and permeation into the films based on density functional theory. We found that the H2 molecule prefers to dissociate on the surface of pure α-Fe2O3 thin film with adsorption energy of −1.18 eV. Doping Al or Cr atoms in the subsurface of α-Fe2O3 (001) films can reduce the adsorption energy by 0.03 eV (Al) or 0.09 eV (Cr) for H surface adsorption. In contrast, Ni doping substantially enhances the H adsorption energy by 1.08 eV. As H permeates into the subsurface of the film, H occupies the octahedral interstitial site and forms chemical bond with an O atom. Comparing with H subsurface absorption in the pure film, the absorption energy decreases by 0.01–0.22 eV for the Al- and Cr-doped films, whereas increases by 0.82–0.96 eV for the Ni-doped film. These results suggest that doping Al or Cr prevents H adsorption on the surface or permeation into the passive film, which effectively reduces the possibility of hydrogen embrittlement of the underlying steel.  相似文献   

18.
Uniform-sized orthorhombic MoO3 nanoribbons were synthesized by a simple hydrothermal method at 240 °C. The nanoribbons grew along the [001] orientation, with average length, width and thickness of approximately 20 μm, 270 nm and 90 nm, respectively. The obtained nanoribbons were further annealed in a hydrogen atmosphere at different temperatures to modify their surface states. The treatment of the nanoribbons at 300 °C significantly elevated the concentration of non-stoichiometric Mo5+ to 24.7%, much larger than the original concentration (∼14.8%). A positive relationship was found between the non-stoichiometric Mo5+, chemisorbed oxygen ion and sensor response. The sensor based on the MoO3 nanoribbons treated at 300 °C exhibited a faster response time of approximately 10.9 s, and a higher sensor response of 17.3 towards 1000 ppm H2, compared with the results of original tests (∼21 s and ∼5.7, respectively), indicating the significantly improved gas sensing performance of the treated MoO3. Meanwhile, the sensor also exhibited excellent repeatability and selectivity toward hydrogen gas. The enhancement of the hydrogen gas sensing performance of treated MoO3 nanoribbons was attributed to the more effective adjustment of the width of the depletion region on the nanoribbon surface and the height of the potential barrier at the junctions, induced by the interaction between hydrogen molecules and higher-concentration oxygen ions. Our research implied that the gas sensing performance of nanostructured metal oxides could be successfully enhanced through annealing in the reducing gas.  相似文献   

19.
Density functional theory (DFT) computational studies were conducted to explore the hydrogen storage performance of a monolayer material that is built on the base of carbon nitride (g-C3N4, heptazine structure) with decoration by magnesium (Mg). We found that a 2 × 2 supercell can bind with four Mg atoms. The electronic charges of Mg atoms were transferred to the g-C3N4 monolayer, and thus a partial electropositivity on each adsorbed Mg atom was formed, indicating a potential improvement in conductivity. This subsequently causes the hydrogen molecules’ polarization, so that these hydrogen molecules can be efficiently adsorbed via both van der Waals and electrostatic interactions. To note, the configurations of the adsorbed hydrogen molecules were also elucidated, and we found that most adsorbed hydrogen molecules tend to be vertical to the sheet plane. Such a phenomenon is due to the electronic potential distribution. In average, each adsorbed Mg atom can adsorb 1–9 hydrogen molecules with adsorption energies that are ranged from ?0.25 eV to ?0.1 eV. Moreover, we realised that the nitrogen atom can also serve as an active site for hydrogen adsorption. The hydrogen storage capacity of this Mg-decorated g-C3N4 is close to 7.96 wt %, which is much higher than the target value of 5.5 wt % proposed by the U.S. department of energy (DOE) in 2020 [1]. The finding in this study indicates a promising carbon-based material for energy storage, and in the future, we hope to develop more advanced materials along this direction.  相似文献   

20.
The adsorption of hydrogen (H2) molecules on MoS2 monolayers doped with Fe, Co, Ni, Ru, Rh, Pd, Os, Ir or Pt was calculated via first-principle density functional theory (DFT). The H2 was found to interact most strongly with the MoS2 doped with Os with a higher adsorption energy of ?1.103 eV. Investigations of the adsorptions of two to five H2 molecules on Os-doped MoS2 monolayers indicate that there are at most four H2 interacting stably with the substrate with a promising average adsorption energy of ?0.792 eV. Molecular dynamics simulations also confirmed that the four H2 molecules can still be reasonably adsorbed and stored on the Os-doped MoS2 monolayer with a comparable average adsorption energy of ?0.713 eV at 300 K. This study indicates that MoS2 monolayer doped with Os is a promising substrate to interact strongly with H2 and can be applied to effectively store H2 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号