首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The layout of the heliostat field of solar tower systems is optimized for maximum annual solar-to-chemical energy conversion efficiency in high-temperature thermochemical processes for solar fuels production. The optimization algorithm is based on the performance function that includes heliostat characteristics, secondary optics, and chemical receiver-reactor characteristics at representative time steps for evaluating the annual fuel production rates. Two exemplary applications for solar fuels production are selected: the thermal reduction of zinc oxide as part of a two-step water-splitting cycle for hydrogen production, and the coal gasification for syngas production.  相似文献   

2.
This paper analyzes innovative processes for producing hydrogen from fossil fuels conversion (natural gas, coal, lignite) based on chemical looping techniques, allowing intrinsic CO2 capture. This paper evaluates in details the iron-based chemical looping system used for hydrogen production in conjunction with natural gas and syngas produced from coal and lignite gasification. The paper assesses the potential applications of natural gas and syngas chemical looping combustion systems to generate hydrogen. Investigated plant concepts with natural gas and syngas-based chemical looping method produce 500 MW hydrogen (based on lower heating value) covering ancillary power consumption with an almost total decarbonisation rate of the fossil fuels used.The paper presents in details the plant concepts and the methodology used to evaluate the performances using critical design factors like: gasifier feeding system (various fuel transport gases), heat and power integration analysis, potential ways to increase the overall energy efficiency (e.g. steam integration of chemical looping unit into the combined cycle), hydrogen and carbon dioxide quality specifications considering the use of hydrogen in transport (fuel cells) and carbon dioxide storage in geological formation or used for EOR.  相似文献   

3.
Molten lead oxide is revealed to have favourable thermodynamic performance for gasification in a new process employing chemical looping of a molten liquid metal oxide. In this process, the feedstock is partially oxidized with molten lead oxide in the fuel reactor, while the reduced molten lead is oxidized in the air reactor. As with other chemical looping processes, this avoids direct contact between air and fuel, which prevents the undesirable dilution of the gaseous product with nitrogen. The Gibbs minimization method was employed together with thermo-chemical equilibrium analysis to assess the feasibility of the gasification process using graphite as a surrogate for more realistic, but complex carbonaceous fuels, together with steam and/or carbon dioxide as the gasifying agent. It was found that both the reduction and oxidation reactions of molten lead oxide with carbonaceous fuel are spontaneous. Likewise, the ratio of H2:CO can be as high as 2.5, while the carbon conversion can reach 94% based on the thermochemical analysis. An energetic performance analysis was also employed for the case of a supercritical steam turbine cycle to extract work from the hot gaseous co-products. On this basis, the first law efficiency of the power cycle was estimated to be up to 33.8%, while the syngas co-product stream for applications such as Fischer-Tropsch synthesis has a chemical exergy efficiency of 41%.  相似文献   

4.
Chemical looping technology for capturing and hydrothermal processes for conversion of carbon are discussed with focused and critical assessments. The fluidized and stationary reactor systems using solid, including biomass, and gaseous fuels are considered in chemical looping combustion, gasification, and reforming processes. Sustainability is emphasized generally in energy technology and in two chemical looping simulation case studies using coal and natural gas. Conversion of captured carbon to formic acid, methanol, and other chemicals is also discussed in circulating and stationary reactors in hydrothermal processes. This review provides analyses of the major chemical looping technologies for CO2 capture and hydrothermal processes for carbon conversion so that the appropriate clean energy technology can be selected for a particular process. Combined chemical looping and hydrothermal processes may be feasible and sustainable in carbon capture and conversion and may lead to clean energy technologies using coal, natural gas, and biomass. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Three hybrid solar/fossil-fuel endothermic processes, in which fossil fuels are used exclusively as the chemical source for H2 production, and concentrated solar radiation as the energy source of high-temperature process heat, are considered: (1) the thermal decomposition; (2) the steam-reforming; and (3) the steam-gasification. A second-law analysis is performed for establishing their maximum exergy efficiency and CO2 mitigation potential vis-à-vis the conventional combustion-based power generation. These hybrid solar thermochemical processes offer viable and efficient routes for fossil fuel decarbonization and CO2 avoidance, and further create a transition path towards solar hydrogen.  相似文献   

6.
In most current fossil-based hydrogen production methods, the thermal energy required by the endothermic processes of hydrogen production cycles is supplied by the combustion of a portion of the same fossil fuel feedstock. This increases the fossil fuel consumption and greenhouse gas emissions. This paper analyzes the thermodynamics of several typical fossil fuel-based hydrogen production methods such as steam methane reforming, coal gasification, methane dissociation, and off-gas reforming, to quantify the potential savings of fossil fuels and CO2 emissions associated with the thermal energy requirement. Then matching the heat quality and quantity by solar thermal energy for different processes is examined. It is concluded that steam generation and superheating by solar energy for the supply of gaseous reactants to the hydrogen production cycles is particularly attractive due to the engineering maturity and simplicity. It is also concluded that steam-methane reforming may have fewer engineering challenges because of its single-phase reaction, if the endothermic reaction enthalpy of syngas production step (CO and H2) of coal gasification and steam methane reforming is provided by solar thermal energy. Various solar thermal energy based reactors are discussed for different types of production cycles as well.  相似文献   

7.
The thermodynamic potential of a chemical looping gasification with liquid bismuth oxide for the production of syngas was assessed using thermo-chemical analysis. In the proposed process, the feedstock is partially oxidised by the molten bismuth in the gasification reactor and then oxidised with air in the air reactor. The motivation for this process is its potential to avoid both the technical challenges associated with the use of solid oxygen carriers in conventional chemical looping gasification systems (e.g. agglomeration and sintering of solid-state oxygen carrier) and the challenge of dilution of syngas with nitrogen that occurs in conventional air gasification systems. This revealed thermochemical potential to achieve a higher quality of syngas for a given amount of steam than has been reported previously for other gasification systems at a moderate temperature of 850 °C. Plausible approaches to address the research challenges that need to be overcome to implement the method are also identified, justifying further development of the technology.  相似文献   

8.
Hydrogen and syngas production from sewage sludge via steam gasification   总被引:1,自引:0,他引:1  
High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 °C was found to be 0.076 ggas gsample−1. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes.  相似文献   

9.
Solar energy is going to play a crucial role in the future energy scenario of the world that conducts interests to solar-to-hydrogen as a means of achieving a clean energy carrier. Hydrogen is a sustainable energy carrier, capable of substituting fossil fuels and decreasing carbon dioxide (CO2) emission to save the world from global warming. Hydrogen production from ubiquitous sustainable solar energy and an abundantly available water is an environmentally friendly solution for globally increasing energy demands and ensures long-term energy security. Among various solar hydrogen production routes, this study concentrates on solar thermolysis, solar thermal hydrogen via electrolysis, thermochemical water splitting, fossil fuels decarbonization, and photovoltaic-based hydrogen production with special focus on the concentrated photovoltaic (CPV) system. Energy management and thermodynamic analysis of CPV-based hydrogen production as the near-term sustainable option are developed. The capability of three electrolysis systems including alkaline water electrolysis (AWE), polymer electrolyte membrane electrolysis, and solid oxide electrolysis for coupling to solar systems for H2 production is discussed. Since the cost of solar hydrogen has a very large range because of the various employed technologies, the challenges, pros and cons of the different methods, and the commercialization processes are also noticed. Among three electrolysis technologies considered for postulated solar hydrogen economy, AWE is found the most mature to integrate with the CPV system. Although substantial progresses have been made in solar hydrogen production technologies, the review indicates that these systems require further maturation to emulate the produced grid-based hydrogen.  相似文献   

10.
This paper reviews the recent developments on thermochemical conversion of concentrated solar high temperature heat to chemical fuels. The conversion has the advantage of producing long term storable energy carriers from solar energy. This conversion also enables solar energy transportation from the sunbelt to remote population centers. The thermochemical pathway is characterized by a theoretical high efficiency. However, there are solar peculiarities in comparison to conventional thermochemical processes—high thermal flux density and frequent thermal transients because of the fluctuating insolation—, and conventional industrial thermochemical processes are generally not suitable for solar driven processes. Therefore, the adaptation to such peculiarities of solar thermochemical processes has been the important R&D task in this research field. Thermochemical water splitting, steam or CO2 gasification of coal, steam or CO2 reforming of methane, and hydrogenetive coupling of methane, are industrially important, endothermic processes to produce useful chemical fuels such as hydrogen, synthesis gas and C2-hydrocarbons, which have been examined as solar thermochemical processes. The technical developments and feasibilities to conduct these endothermic processes by utilizing concentrated solar radiation as the process heat are discussed here. My recent experimental results to improve the advanced solar thermochemical technologies are also given.  相似文献   

11.
Three low-grade carbonaceous materials from biomass (Scenedesmus algae and wheat straw) and waste treatment (sewage sludge) have been selected as feedstock for solar-driven thermochemical processes. Solar-driven pyrolysis and gasification measurements were conducted directly irradiating the samples in a 7 kWe high flux solar simulator and the released gases H2, CO, CO2 and CH4 and the sample temperature were continuously monitored.Solar-driven experiments showed that H2 and CO evolved as important product gases demonstrating the high quality of syngas production for the three feedstocks. Straw is the more suitable feedstock for solar-driven processes due to the high gas production yields. Comparing the solar-driven experiments, gasification generates higher percentage of syngas (mix of CO and H2) respect to total gas produced (sum of H2, CO, CO2 and CH4) than pyrolysis. Thus, solar-driven gasification generates better quality of syngas production than pyrolysis.  相似文献   

12.
The relative performance of different potential liquid oxygen carriers within a novel system that can be configured for either chemical looping gasification or combustion is assessed. The parameters considered here are the melting temperature, the Gibbs free energy, reaction enthalpy, exergy and energy flows, syngas quality and temperature difference between the two reactors. Results show that lead, copper and antimony oxides are meritorious candidates for the proposed systems. Antimony oxide was found to offer strong potential for high quality syngas production because it has a reasonable oxygen mass ratio for gasification. A sufficiently low operating temperature to be compatible with concentrated solar thermal energy and a propensity to generate methane. In contrast, copper and lead oxides offer greater potential for liquid chemical looping combustion because they have higher oxygen mass ratio and a higher operating temperature, which enables better efficiency from a power plant. For all three metal oxides, the production of methane via the undesirable methanation reaction is less than 2% of the product gasses for all operating temperatures and an order of magnitude lower for lead.  相似文献   

13.
Gasification tar during a fluidized bed operation impedes syngas utilization in downstream applications. Among tar constituents sampled during biomass gasification, benzene was the most abundant species. Thus, benzene was used as a model compound for chemical looping dry reforming (CLDR) over iron (Fe) and nickel (Ni) metals impregnated on silicon carbide (SiC) in a lab-scale fluidized bed reactor to convert it into hydrogen and carbon monoxide (H2 and CO). A high benzene conversion rate (>90%) was observed at a higher experimental temperature (above 730 °C). Catalytic conversion of benzene using NiFe/SiC catalyst resulted in higher H2 production whereas higher levels of CO were produced with Fe/SiC catalyst at an elevated temperature. Control experiments using an empty bed and SiC bed showed the formation of both the biphenyls and excessive carbon deposits. Air oxidation was also performed for the regeneration of oxygen carrier during the chemical looping operation.  相似文献   

14.
A steam gasification processes is an energy conversion pathway through which organic materials are converted to useful energy. In spite of the high energy content in organic waste materials, they have been mostly disposed of in landfills, which causes harmful environmental issues such as methane emissions and ground water pollution and contaminations. In this sense, organic solid waste materials are regarded as alternative resources for conversion to useful energy in the steam gasification process. In this study, three types of waste materials – municipal solid waste (MSW), used tires and sewage sludge – were used to generate syngas through the gasification process in a 1000 °C steam atmosphere. The syngas generation rates and its chemical compositions were measured and evaluated over time to determine the characteristics and dynamics of the gasification process. Also, carbon conversion, and mass and energy balances are presented which demonstrates the feasibility of steam gasification as a waste conversion pathway. The results show that the syngas contains high concentrations of H2, around 41–55% by volume. The syngas generation rate was found to depend on the carbon content in the feedstock regardless of the types of input materials. Comparing to the hydrogen production from water splitting that requires extremely high temperatures at around 1500 °C, hydrogen production by steam gasification of organic materials can be regarded as equally effective but requires lower system temperatures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H2 yield, efficiency and syngas energy density.  相似文献   

16.
Biomass chemical looping gasification (BCLG), which employs oxygen carriers (OCs) as the gasification agent, is drawing more attention for its low cost and environmental friendliness. However, the complex products of biomass pyrolysis and the reactions between OCs and the pyrolysis products constrain its development. In this study, MFe2O4 (M = Cu, Ba, Ni and Co) ferrites synthesized via the sol-gel method were investigated as OCs in BCLG for hydrogen-rich syngas production. The properties of the as-prepared and spent OCs were characterized by X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), scanning electron microscopy (SEM), and automatic surface area porosimetry (BET). The three-phase products (char, pyrolysis gas and toluene) derived from biomass pyrolysis were employed as the reactants to investigate the reactivity of the ferrites. Then, BCLG experiments using biomass were conducted on the four ferrites to further determine their performance. The characterization results suggested that the four ferrites are all attractive for the chemical looping process, exhibiting good oxygen transferability and wide distributions of metal cations because of their metal synergistic effects in the spine structure. Reactions with pyrolysis gas and biomass char indicated that BaFe2O4 has a higher reactivity via a solid-solid reaction but a lower reactivity with pyrolysis gas, which make it very favorable for the production of hydrogen-rich syngas. Furthermore, BaFe2O4 showed excellent performance for toluene catalytic cracking with small amounts of carbon deposition. The synergetic effects between Ba and Fe metals considerably enhanced selective oxidation to produce 26.72% more H2 than CoFe2O4 and 13.79% more H2 than NiFe2O4 and CuFe2O4 for biomass gasification. The hydrogen yield produced by BaFe2O4 with the assistance of steam for biomass gasification can reach 41.8 mol/kg of biomass.  相似文献   

17.
《能源学会志》2020,93(3):1083-1098
Biomass is promising renewable energy because of the possibility of value-added fuels production from biomass thermochemical conversion. Among the thermochemical conversion technology, gasification could produce the H2-rich syngas then into value-added chemicals via F-T (Fischer-Tropsch) synthesis. However, a variety of difficulties, such as tar formation, reactors impediment, complex tar cracked mechanism, etc. make it difficult to develop for further application. This paper sheds light on the developments of biomass thermochemical conversion, tar classifications, tar formation, and elimination methods. Secondly, we provide a comprehensive the state-of-the-art technologies for tar elimination, and we introduce some advanced high activity catalysts. Furthermore, many represent tar models were employed for explanation of the tar-cracked pathway, and real tar-cracked mechanism was proposed. Following this, some operational conditions and effective gasified models were concluded to give an instruction for biomass catalytic gasification.  相似文献   

18.
Exergetic and energetic analysis has been utilized to estimate the effect of process design and conditions on the hydrogen purity and yield, exergetic efficiencies and CO2 avoided. Methane was chosen as a model compound for evaluating single stage separation. Simple steam reforming was considered as the base – case system. The other chemical processes that were considered were steam reforming with CO2 capture with and without chemical looping of a reactive carbon dioxide removal agent, and steam gasification with both the Boudouard reaction catalyst and the reactive carbon dioxide removal agent with and without the solids regeneration. The information presented clearly demonstrates the differences in efficiencies between the various chemical looping processes for hydrogen generation. The incremental changes in efficiencies as a function of process parameters such as temperature, steam amount, chemical type and amount were estimated. Energy and exergy losses associated with generation of syngas, separation of hydrogen from COx as well as exergetic loss associated with emissions are presented. The optimal conditions for each process by minimizing these losses are presented. The majority of the exergy destruction occurs due to the high irreversibility of chemical reactions. The results of this investigation demonstrate the utility of exergy analysis. The paper provides a procedure for the comparison of various technologies for the production of hydrogen from carbon based materials based on First and Second Law Analysis. In addition, two figures of merit, namely the comparative advantage factor and the sustainable advantage factor have been proposed to compare the various hydrogen production methods using carbonaceous fuels.  相似文献   

19.
The chemical looping gasification (CLG) process utilizes an iron-based oxygen carrier to convert carbonaceous fuels into hydrogen and electricity while capturing CO2. Although the process has the potential to be efficient and environmentally friendly, the activity of the iron-based oxygen carrier is relatively low, especially for solid fuel conversion. In the present study, we propose to incorporate a secondary oxygen carrying metal oxide, i.e. CuO, to the iron-based oxygen carrier. Using the “oxygen-uncoupling” characteristics of CuO, gaseous oxygen is released at a high temperature to promote the conversion of both Fe2O3 and coal. Experiments carried out using a Thermal-Gravimetric Analyzer (TGA) indicate that a bimetallic oxygen carrier consisting of a small amount (5% by weight) of CuO is more effective for coal char conversion when compared to oxygen carrier without copper addition. ASPEN Plus® simulations and mathematical modeling of the process indicate that the incorporation of a small amount of copper leads to increased hydrogen yield and process efficiency.  相似文献   

20.
This paper develops and analyzes an integrated process model of an Integrated Gasification Combined Cycle (IGCC) and a thermochemical copper-chlorine (Cu-Cl) cycle for trigeneration of hydrogen, steam and electricity. The process model is developed with Aspen HYSYS software. By using oxygen instead of air for the gasification process, where oxygen is provided by the integrated Cu-Cl cycle, it is found that the hydrogen content of produced syngas increases by about 20%, due to improvement of the gasification combustion efficiency and reduction of syngas NOx emissions. Moreover, about 60% of external heat required for the integrated Cu-Cl cycle can be provided by the IGCC plant, with minor modifications of the steam cycle, and a slight decrease of IGCC overall efficiency. Integration of gasification and thermochemical hydrogen production can provide significant improvements in the overall hydrogen, steam and electricity output, when compared against the processes each operating separately and independently of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号