首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a comprehensive thermodynamic evaluation of an integrated plant with biomass is investigated, according to thermodynamic laws. The modeled multi-generation plant works with biogas produced from demolition wood biomass. The plant mainly consists of a biomass gasifier cycle, clean water production system, hydrogen production, hydrogen compression, gas turbine sub-plant, and Rankine cycle. The useful outputs of this plant are hydrogen, electricity, heating and clean water. The hydrogen generation is obtained from high-temperature steam electrolyzer sub-plant. Moreover, the membrane distillation unit is used for freshwater production, and also, the hydrogen compression unit with two compressors is used for compressed hydrogen storage. On the other hand, energy and exergy analyses, as well as irreversibilities, are examined according to various factors for examining the efficiency of the examined integrated plant and sub-plants. The results demonstrate that the total energy and exergy efficiencies of the designed plant are determined as 52.84% and 46.59%. Furthermore, the whole irreversibility rate of the designed cycle is to be 37,743 kW, and the highest irreversibility rate is determined in the biomass gasification unit with 12,685 kW.  相似文献   

2.
Renewable energy-based hydrogen production plants can offer potential solutions to both ensuring sustainability in energy generation systems and designing environmentally friendly systems. In this combined work, a novel solar energy supported plant is proposed that can generate hydrogen, electricity, heating, cooling and hot water. With the suggested integrated plant, the potential of solar energy usage is increased for energy generation systems. The modeled integrated system generally consists of the solar power cycle, solid oxide fuel cell plant, gas turbine process, supercritical power plant, organic Rankine cycle, cooling cycle, hydrogen production and liquefaction plant, and hot water production sub-system. To conduct a comprehensive thermodynamic performance analysis of the suggested plant, the combined plant is modeled according to thermodynamic equilibrium equations. A performance assessment is also conducted to evaluate the impact of several plant indicators on performance characteristics of integrated system and its sub-parts. Hydrogen production rate in the suggested plant according to the performance analysis performed is realized as 0.0642 kg/s. While maximum exergy destruction rate is seen in the solar power plant with 8279 kW, the cooling plant has the lowest exergy destruction rate as 1098 kW. Also, the highest power generation is obtained from gas turbine cycle with 7053 kW. In addition, energetic and exergetic efficiencies of solar power based combined cycle are found as 56.48% and 54.06%, respectively.  相似文献   

3.
In the present study, an innovative multigeneration plant for hydrogen and ammonia generation based on solar and biomass power sources is suggested. The proposed integrated system is designed with the integration of different subsystems that enable different useful products such as power and hydrogen to be obtained. Performance evaluation of designed plant is carried out using different techniques. The energetic and exergetic analyses are applied to investigate and model the integrated plant. The plant consists of the parabolic dish collector, biomass gasifier, PEM electrolyzer and hydrogen compressor unit, ammonia reactor and ammonia storage tank unit, Rankine cycle, ORC cycle, ejector cooling unit, dryer unit and hot water production unit. The biomass gasifier unit is operated to convert biomass to synthesis gaseous, and the concentrating solar power plant is utilized to harness the free solar power. In the proposed plant, the electricity is obtained by using the gas, Rankine and ORC turbines. Additionally, the plant generates compressed hydrogen, ammonia, cooling effect and hot water with a PEM electrolyzer and compressed plant, ammonia reactor, ejector process and clean-water heater, respectively. The plant total electrical energy output is calculated as 20,125 kW, while the plant energetic and exergetic effectiveness are 58.76% and 55.64%. Furthermore, the hydrogen and ammonia generation are found to be 0.0855 kg/s and 0.3336 kg/s.  相似文献   

4.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

5.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

6.
In the examined paper, a solar and wind energy supported integrated cycle is designed to produce clean power and hydrogen with the basis of a sustainable and environmentally benign. The modeled study mainly comprises of four subsystems; a solar collector cycle which operates with Therminol VP1 working fluid, an organic Rankine cycle which runs with R744 fluid, a wind turbine as well as hydrogen generation and compression unit. The main target of this work is to investigate a thermodynamic evaluation of the integrated system based on the 1st and 2 nd laws of thermodynamics. Energetic and exergetic efficiencies, hydrogen and electricity generation rates, and irreversibility for the planned cycle and subsystems are investigated according to different parameters, for example, solar radiation flux, reference temperature, and wind speed. The obtained results demonstration that the whole energy and exergy performances of the modeled plant are 0.21 and 0.16. Additionally, the hydrogen generation rate is found as 0.001457 kg/s, and the highest irreversibility rate is shown in the heat exchanger subcomponents. Also, the net power production rate found to be 195.9 kW and 326.5 kW, respectively, with organic Rankine cycle and wind turbine. The final consequences obtained from this work show that the examined plant is an environmentally friendly option, which in terms of the system's performance and viable, for electrical power and hydrogen production using renewable energy sources.  相似文献   

7.
Municipal solid waste (MSW) of Urmia University student dormitories was utilized to trigger a co-generation system. The combined heat and power system consisted of a gasifier, a micro gas turbine, an organic Rankine cycle, a heat exchanger, and a domestic heat recovery. The system performance was validated by comparing the results with experimental results available in the literature. Air, steam, and oxygen were considered as different gasification mediums. Hydrogen content in the case of the steam medium was higher at all gasification temperatures and low moisture contents. However, hydrogen content of the system based oxygen medium was higher at high moisture contents. The system performances from power generation and hot water flow rate viewpoints were assessed versus the MSW flow rate, gasification temperature, pressure ratio, and turbine inlet temperature. Taguchi approach was employed to optimize the generated power in air, steam, and oxygen medium cases. The optimum conditions were the same for all cases. The optimum powers were 281.1 kW, 279.4 kW, and 266.9 kW for the system based steam, air, and oxygen gasifying agents, respectively.  相似文献   

8.
A solar transcritical CO2 power cycle for hydrogen production is studied in this paper. Liquefied Natural Gas (LNG) is utilized to condense the CO2. An exergy analysis of the whole process is performed to evaluate the effects of the key parameters, including the boiler inlet temperature, the turbine inlet temperature, the turbine inlet pressure and the condensation temperature, on the system power outputs and to guide the exergy efficiency improvement. In addition, parameter optimization is conducted via Particle Swarm Optimization to maximize the exergy efficiency of hydrogen production. The exergy analysis indicates that both the solar and LNG equally provide exergy to the CO2 power system. The largest amount of exergy losses occurs in the solar collector and the condenser due to the great temperature differences during the heat transfer process. The exergy loss in condenser could be greatly reduced by increasing the LNG temperature at the inlet of the condenser. There exists an optimum turbine inlet pressure for achieving the maximum exergy efficiency. With the optimized turbine inlet pressure and other parameters, the system is able to provide 11.52 kW of cold exergy and 2.1 L/s of hydrogen. And the exergy efficiency of hydrogen production could reach 12.38%.  相似文献   

9.
Rice straw is a potential energy source for power generation. Here, a biomass-based combined heat and power plant integrating a downdraft gasifier, a solid oxide fuel cell, a micro gas turbine and an organic Rankine cycle is investigated. Energy, exergy, and economic analyses and multi-objective optimization of the proposed system are performed. A parametric analysis is carried out to understand the effects on system performance and cost of varying key parameters: current density, fuel utilization factor, operating pressure, pinch point temperature, recuperator effectiveness and compressors isentropic efficiency. The results show that current density plays the most important role in achieving a tradeoff between system exergy efficiency and cost rate. Also, it is observed that the highest exergy destruction occurs in the gasifier, so improving the performance of this component can considerably reduce the system irreversibility. At the optimum point, the system generates 329 kW of electricity and 56 kW of heating with an exergy efficiency of 35.1% and a cost rate of 10.2 $/h. The capability of this system for using Iran rice straw produced in one year is evaluated as a case study, and it is shown that the proposed system can generate 6660 GWh electrical energy and 1140 GWh thermal energy.  相似文献   

10.
The primary objective of this work is to investigate a comprehensive thermodynamic assessment of the biomass-assisted multigeneration plant for electrical energy, hydrogen, heating-cooling, drying, and hot water production. The suggested multigeneration plant includes the biomass gasification process, Brayton cycle, Kalina cycle, organic Rankine cycle, and cascade refrigeration plant, which is to produce heating and cooling loads, drying system, hydrogen generation with copper–chlorine thermochemical process, and hydrogen liquefaction process. Based on the thermodynamic laws, the total irreversibility rate and performance assessment of the examined study is conducted. Moreover, the impact of various factors such as reference temperature, biomass gasifier temperature, and mass flow rate of biofuel, on the effectiveness and useful outputs of planned plant are examined. The outcomes of the proposed study show that 18 626, 3948 and 1037 kW electrical energy are generated by using the Brayton, Kalina, and organic Rankine cycle. Furthermore, the total cooling and heating capacities and hydrogen generation rates are 2392, 2864 kW and 0.068 kg s−1. Finally, energetic and exergetic effectiveness of the examined model are calculated as 56.71% and 53.59%.  相似文献   

11.
Today, to preserve fossil resources, mankind has to search for new ways to respond to its ever-increasing energy needs. In this study, a hybrid system of energy and the use of a parabolic trough solar collector to attract solar radiation was investigated to produce clean electricity, cooling, and hydrogen from thermodynamic and economic aspects. The designed system consisted of a parabolic trough solar collector, organic Rankine cycle, lithium-bromide absorption refrigeration cycle, and proton exchange membrane electrolysis system. The evaporator input temperature, turbine inlet temperature, solar radiation intensity, mass flow rate of collector and parabolic trough collector surface area were set as decision variables and the effect of these parameters on system performance and system exergy loss were investigated. The objective functions of this research were exergy efficiency and cost rate. In order to optimize this system, multi-objective particle swarm optimization algorithm was employed. Optimization results with particle swarm optimization indicated that the best rate of exergy efficiency is 3.12% and the system cost rate is 16.367 US$ per hour, at the same time. The system is capable of producing 15.385 kW power, 0.189 kg/day hydrogen and 56.145 kW cooling in its optimum condition. The results of sensitivity analysis showed that increasing mass flow rate at the collector, temperature at the evaporator inlet, and temperature at the turbine inlet have positive effect on the performance of the proposed system.  相似文献   

12.
A combined plant including a fluidized bed gasifier, a gas turbine, a domestic heat recovery, and heat pipes was proposed and investigated from the first and the second thermodynamic laws and environmental viewpoints. Two types of biomass (wheat straw and rice straw) were fed to the gasifier. A zero-dimensional model was validated against results available in the literature. Gibbs free energy minimization and Lagrange method of undetermined multipliers methods were utilized to obtain the unknown parameters. Effects of steam to biomass ratio of the steam biomass gasification, inlet turbine temperature, and compression ratio were investigated on the plant performances. Analysis of variance results and Pareto chart of the standardized effects were carried out for net power, total exergy efficiency, and carbon dioxide emission of the combined plant. The plant was optimized using response surface methodology. The results indicated that the compression ratio was the most effective parameter and the plant performance was enhanced by increasing the compression ratio. Wheat straw had better performance in comparison with rice straw. Increasing steam to biomass ratio improved the hydrogen production and decreased the cold gas efficiency. Net power was on maximum value at steam to biomass ratio of 1.0, inlet turbine temperature of 1173–1217 K, and compression ratio of 11–12.  相似文献   

13.
In the generation of electricity and cogeneration, Kalina cycle is considered as one of the competitors to organic Rankine cycle. With the simplicity and identical components of the binary mixture, Kalina system makes it more prominent to get developed and implemented as well with its environmental friendly associate. This work proposes a new improved Kalina cycle system to convert the natural source from sun to useful work. The proposed system utilizes heat source suitable to medium temperature heat applications. The proposed cycle have 2 units of solar collector, favoring an additional heat recovery and higher performance. Solar hot source temperature and pressure are 190°C and 45 bar with additional flow to the turbine of 1.15 kg/s. Energy and second law analysis have considered in evaluating the performance of the proposed plant. The energy analysis shows minimum value of net power, energy efficiency and plant efficiency as 241 kW, 15.5% and 5.7. The exergy analysis defines that, to the proposed cycle, the exergy efficiency initializes at 77% with more exergy destruction at turbine with 31%. With the parametric analysis, the system is amended to have the maximum values of energy and exergy performances as 18.5%, 7.1% and 85%. The parametric study identifies the optimum value of the inlet temperature and pressure of the pump and turbine.  相似文献   

14.
In this article, an extensive thermodynamic performance assessment for the useful products from the solar tower and high-temperature steam electrolyzer assisted multigeneration system is performed, and also its sustainability index is also investigated. The system under study is considered for multi-purposes such as power, heating, cooling, drying productions, and also hydrogen generation and liquefaction. In this combined plant occurs of seven sub-systems; the solar tower, gas turbine cycle, high temperature steam electrolyzer, dryer process, heat pump, and absorption cooling system with single effect. In addition, the energy and exergy performance, irreversibility and sustainability index of multigeneration system are examined according to several factors, such as environment temperature, gas turbine input pressure, solar radiation and pinch point temperature of HRSG. Results of thermodynamic and sustainability assessments show that the total energetic and exergetic efficiency of suggested paper are calculated as 60.14%, 58.37%, respectively. The solar tower sub-system has the highest irreversibility with 18775 kW among the multigeneration system constituents. Solar radiation and pinch point temperature of HRSG are the most critical determinants affecting the system energetic and exergetic performances, and also hydrogen production rate. In addition, it has been concluded that, the sustainability index of multigeneration suggested study has changed between 2.2 and 3.05.  相似文献   

15.
Current research aims to develop, design, and analyze a novel solar-assisted multi-purpose energy generation system for hydrogen production, electricity generation, refrigeration, and hot water preparation. The suggested system comprises a solar dish for supplying the necessary heat demand, a re-compression carbon dioxide-based Brayton cycle, a PEM electrolyzer for hydrogen generation, an ejector refrigeration system working with ammonia, and a hot water preparation system. The first law and exergy analyses are implemented to determine the performance of the multi-generation plant with various outputs. Besides, the exergo-environmental evaluation of the plant is conducted for the environmental impacts of the plant. Furthermore, parametric analyses are executed for investigating the system outputs, exergy destruction rate, and system efficiencies. According to the results, the rate of hydrogen generated by means of the multi-generation power plant is determined to be 0.062 g/s which corresponds to an hourly production of 0.223 kg. Besides, with the utilization of the supercritical closed Brayton cycle, a power generation rate of 74.86 kW is achieved. Furthermore, the irreversibility of the overall plant is estimated as 535.7 kW in which the primary contributor of this amount is the solar system with a destruction rate of 365.5 kW.  相似文献   

16.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

17.
In this paper, a novel syngas-fed combined cogeneration plant, integrating a biomass gasifier, a molten carbonate fuel cell (MCFC), a heat recovery steam generator (HRSG) unit, a Stirling engine, and an organic Rankine cycle (ORC), is introduced and thermodynamically analyzed to recognize its potentials compared to the previous solo/combined systems. For the proposed system, energetic, exergetic as well as environmental evaluations are performed. Based on the results, the gasifier and the fuel cell have a significant contribution to the exergy destruction of the system. Through a parametric study, the current density and the stack temperature difference are known as the main effective factors on the plant performance. Meanwhile, dividing the whole system into three sub-models, i.e., model (1): power production plant including the gasifier and MCFC without including Stirling engine, HRSG, and ORC unit, model (2): the cogeneration system without ORC unit, and model (3): the whole cogeneration system, an environmental impact assessment is carried out regarding CO2 emission. Considering paper as biomass revealed that maximum value of exergy efficiency is 50.18% with CO2 emissions of 28.9 × 10−2 t.MWh−1 which compared to the solo MCFC system indicates 28.40% increase and 13.3 × 10−2 t.MWh−1 decrease in exergy efficiency and CO2 emission, respectively.  相似文献   

18.
In this study, a novel Ocean Thermal Energy Conversion (OTEC) based tri-generation system that produces ammonia, cooling and power is developed and analysed. This OTEC plant operates on the naturally existing temperature difference that exists in various depths of the ocean. The OTEC plant used in this study is operated using a single-stage ammonia Rankine cycle. The discharge seawater from the condenser in the organic Rankine cycle is used to provide district cooling. Two different operation cases of the analysed system are considered, where for the first case 50% of the power produced is stored in the form of ammonia during the off-peak hours. The second case is for complete power production proposed for peak hours. For the case where 50% of the power produced (case 1) is used to produce ammonia the highest energy and exergy efficiency is found to be 1.37% and 56.17% respectively. As for the case where, only power is produced (case 2) the maximum energy and exergy efficiency of the OTEC plant is found to be 1.83% and 78.02% respectively. The corresponding maximum power production was 6612 kW and 13,224 kW for cases 1 and 2. The maximum hydrogen and ammonia production rate is found to be 94.35 kg/h and 534.7 kg/h at peak efficiency values. The cooling duty at the peak energy and exergy efficiency is found to be 64.4 MW where the condenser temperature is 11.38 °C.  相似文献   

19.
In the present paper, a new energy generation system is suggested for multiple outputs, including a hydrogen generation unit. The plant is powered by a solar tower and involves six different subsystems; supercritical carbon dioxide (sCO2) re-compression Brayton cycle, ammonia-water absorption refrigeration cycle, hydrogen generation, steam generation, drying process, and thermoelectric generator. The thermodynamic assessment of the multi-generation system is carried out for three different cities from Turkey, Iran, and Qatar. The energy and exergy efficiencies are calculated for base conditions to compare the different locations. The operating output parameters for the suggested system and simple re-compression Brayton system are compared. A parametric analysis is also done for investigating the influences of different system variables on plant performance. According to the results, Doha city is found to be more effective due to its geographical conditions. Moreover, based on the comparative study, the proposed cycles produce more power than the basic re-compression cycle with 64.59 kW, 47.33 kW, and 52.25 kW for Doha, Isparta, and Tehran, respectively. Additionally, the analyses revealed that in the term of energy efficiency, the suggested system has 32.29%, 32.28%, and 32.29% better performance than the simple cycle, and in terms of exergy efficiency, it has 4%, 4.8%, and 5% better performance than the simple cycle in Doha, Isparta, and Tehran, respectively.  相似文献   

20.
In order to meet the energy and fuel needs of societies in a sustainable way and hence preserve the environment, there is a strong need for clean, efficient and low-emission energy systems. In this regard, it is aimed to generate cleaner energy outputs, such as electricity, hydrogen and ammonia as well as some additional useful commodities by utilizing both methane gas and the waste heat of an integrated unit to the whole system. In this paper, a novel multi-generation plant is proposed to generate power, hydrogen and ammonia as a chemical fuel, drying, freshwater, heating, and cooling. For this reason, the Brayton cycle as prime unit using methane gas is integrated into the s-CO2 power cycle, organic Rankine cycle, PEM electrolyzer, freshwater production unit, cooling cycle and dryer unit. In order then to evaluate the designed integrated multigeneration system, thermodynamic analyses and parametric studies are performed, revealing that the energy and exergy efficiencies of the whole plant are found to be 69.08% and 65.42%. In addition, ammonia and hydrogen production rates have been found to be 0.2462 kg/s and 0.0631 kg/s for the methane fuel mass flow rate of 1.51 kg/s. Also, the effects of the reference temperature, pinch point temperature of superheater, combustion chamber temperature, gas turbine input pressure, and mass flow rate of fuel on numerous parameters and performance of the plant are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号