首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genes of the acidic ribosomal proteins P1 and P2 (CcP1 and CcP2) of the medfly Ceratitis capitata were isolated from a genomic library using homologue DNA probes prepared by PCR. Sequencing and characterization of the two genes revealed strong similarities of the encoded amino acid sequence to the homologous proteins of Drosophila melanogaster and other eukaryotic species. The predicted amino acid sequences of the CcP1 and CcP2 proteins shared an almost identical carboxyl terminal sequence of 10 amino acids common to most known acidic ribosomal proteins. The CcP2 gene lacked intervening sequences in contrast to the CcP1 gene, which was interrupted by an intron of 188 nucleotides. Both genes were cloned in expression pT7 vectors and were expressed in Esherichia coli. The 17- and 15-kDa recombinant proteins reacted with a monoclonal antibody specific to the highly conserved carboxyl terminus of eukaryotic acidic ribosomal proteins, confirming their equivalence to these ribosomal components. Both recombinant proteins were electrophoretically identical to acidic proteins extracted from purified ribosomes of C. capitata.  相似文献   

2.
3.
4.
We have isolated and sequenced the full length cDNA for topoisomerase I. Using degenerate primers, based on the conserved amino acid sequences of five eukaryotic topoisomerase I, a 386 bp fragment was PCR amplified using pea cDNA as template. This fragment was used as a probe to screen a pea cDNA library. Two partial cDNA clones were isolated which were truncated at the 5' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of the gene was 3055 bp with an open reading frame of 2676 bp. The deduced structure of pea topoisomerase I contain 892 amino acids with a calculated molecular weight of 100 kDa and an estimated pI of 9.3. A comparison of the deduced amino acid sequences of the pea topo I with the other eukaryotic topoisomerases clearly suggested that they are all related. Pea topoisomerase I has been overexpressed in E. coli system and the recombinant topoisomerase purified to homogeneity. The purified protein relaxes both positive and negative supercoiled DNA in the absence of divalent cation Mg2+. In the presence of Mg2+ ions the purified enzyme introduces positive supercoils a unique property not reported in any other organism except in archaebacterial topoisomerase I. Polyclonal antibodies were raised against recombinant topoisomerase I and western blotting with sub-cellular fractions indicated the localization of this topoisomerase in pea nuclei.  相似文献   

5.
Virion-associated proteins isolated from purified human cytomegalovirus particles (strain AD169) were used as substrates for chemical sequence analysis. Extracellular virions, noninfectious enveloped particles, and dense bodies were purified by negative viscosity-positive density gradient centrifugation, and their component proteins were separated by denaturing polyacrylamide gel electrophoresis. The deduced amino acid sequence of individual protein bands was used to identify six corresponding viral genes whose products have not previously been identified as virion constituents: UL47, UL25, UL88, UL85, UL26, and UL48.5. In addition, a 45-kDa cellular protein was identified, and the protein fragments sequenced have a high degree of amino acid identity with actin. However, antiactin monoclonal and polyclonal antibodies did not react with a specific protein in the virus preparations, suggesting that this 45-kDa protein is an immunologically distinct isoform of actin. The newly identified viral and cellular proteins were resistant to protease treatment of purified virions, suggesting that they are unlikely to be contaminants of the viral preparations.  相似文献   

6.
Bacteriophage terminases are oligomeric multifunctional proteins that bind to vegetative DNA, cut it and, together with portal proteins, translocate the DNA into preformed heads. Most terminases are encoded by two partially overlapping genes. In phage T4 they are genes 16 and 17. We have shown before that the larger of these, gene 17, can yield, in addition to a full-length 70 kDa product, several shorter peptides. At least two of these, gene product (gp) 17' and gp17", are initiated in the same reading frame as the 70 kDa gp17 from internal ribosome binding sites. Most of the shorter gp17 s contain predicted ATPase motifs, but only the largest (70 kDa) peptide has a predicted single-stranded DNA binding domain. Here we describe the DNA binding and cutting properties of the purified 70 kDa protein, expressed from two different clones containing gene 17 but no other T4 gene. Epitope-specific antibodies, which recognize several different gene 17 products in extracts of induced clones or of T4-infected cells, precipitate the purified 70 kDa gp17. When Mg2+ is chelated by EDTA this 70 kDa protein binds to single-stranded DNA, preferentially to junctions of single- and double-stranded DNA segments. It does not bind to blunt-ended double-stranded DNA. When Mg2+ is present the purified 70 kDa gp17 digests single-stranded segments preferentially up to junctions with double-stranded DNA. A 70 kDa gp17 from a P379L temperature sensitive (ts) mutant, which has lost the nuclease and ATPase activities, retains the single-stranded DNA binding activity. Taken together with earlier findings these results support a model for packaging of T4 DNA from single-stranded regions in recombinational or replicative intermediates, which occur at nearly random positions of the genome. This mechanism may be an alternative to site-specific initiation of packaging proposed by other investigators.  相似文献   

7.
The cDNAs encoding plantacyanin from spinach were isolated and characterized. In addition, four new cDNA sequences from Arabidopsis ESTs were identified that encode polypeptides resembling phytocyanins, plant-specific proteins constituting a distinct family of mononuclear blue copper proteins. One of them encodes plantacyanin from Arabidopsis, while three others, designated as uclacyanin 1, 2, and 3, encode protein precursors that are closely related to precursors of stellacyanins and a blue copper protein from pea pods. Comparative analyses with known phytocyanins allow further classification of these proteins into three distinct subfamilies designated as uclacyanins, stellacyanins, and plantacyanins. This specification is based on (1) their spectroscopic properties, (2) their glycosylation state, (3) the domain organization of their precursors, and (4) their copper-binding amino acids. The recombinant copper binding domain of Arabidopsis uclacyanin 1 was expressed, purified, and shown to bind a copper atom in a fashion known as "blue" or type 1. The mutant of cucumber stellacyanin in which the glutamine axial ligand was substituted by a methionine (Q99M) was purified and shown to possess spectroscopic properties similar to uclacyanin 1 rather than to plantacyanins. Its redox potential was determined by cyclic voltammetry to be +420 mV, a value that is significantly higher than that determined for the wild-type protein (+260 mV). The available structural data suggest that stellacyanins (and possibly other phytocyanins) might not be diffusible electron-transfer proteins participating in long-range electron-transfer processes. Conceivably, they are involved in redox reactions occurring during primary defense responses in plants and/or in lignin formation.  相似文献   

8.
We have isolated two Rare Cold-Inducible (RCI1 and RCI2) cDNAs by screening a cDNA library prepared from cold-acclimated etiolated seedlings of Arabidopsis thaliana with a subtracted probe. RNA-blot hybridizations revealed that the expression of both RCI1 and RCI2 genes is induced by low temperature independently of the plant organ or the developmental stage considered. However, RCI1 mRNA accumulates faster and at higher levels than the RCI2 one indicating that these genes have differential responsiveness to cold stress. Additionally, when plants are returned to room temperature, RCI1 mRNA decreases faster than RCI2. In contrast to most of the cold-inducible plant genes characterized, the expression of RCI1 and RCI2 is not induced by ABA or water stress. The nucleotide sequences of RCI1 and RCI2 cDNAs predict two acidic polypeptides of 255 and 251 amino acids with molecular weights of 29 and 28 kDa respectively. The alignment of these polypeptides indicates that they have 181 identical amino acids suggesting that the corresponding genes have a common origin. Sequence comparisons reveal no similarities between the RCI proteins and any other cold-regulated plant protein so far described. Instead, they demonstrate that the RCI proteins are highly homologous to a family of proteins, known as 14-3-3 proteins, which are thought to be involved in the regulation of multifunctional protein kinases.  相似文献   

9.
Two new members (Bsar1a and Bsar1b) of the Sar1 gene family have been identified from a flower bud cDNA library of Brassica campestris and their functional characteristics were analyzed. The two clones differ from each other at 14 positions of the 193 amino acid residues deduced from their coding region. The amino acid sequences of Bsar1a and Bsar1b are most closely related to the Sar1 family, genes that function early in the process of vesicle budding from the endoplasmic reticulum (ER). The sequences contain all the conserved motifs of the Ras superfamily (G1-G4 motifs) as well as the distinctive structural feature near the C-terminus that is Sar1 specific. Our phylogenetic analysis confirmed that these two clones can indeed be considered members of the Sar1 family and that they have a close relationship to the ARF family. The Bsar1 proteins, expressed in Escherichia coli, cross-reacted with a polyclonal antibody prepared against Saccharomyces cerevisiae Sar1 protein. It also exhibited GTP-binding activity. Genomic Southern blot analysis, using the 3'-gene-specific regions of the Bsar1 cDNAs as probes, revealed that the two cDNA clones are members of a B. campestris Sar1 family that consists of 2 to 3 genes. RNA blot analysis, using the same gene-specific probes, showed that both genes are expressed with similar patterns in most tissues of the plant, including leaf, stem, root, and flower buds. Furthermore, when we placed the two Bsar1 genes under the control of the yeast pGK1 promoter into the temperature-sensitive mutant yeast strain S. cerevisiae Sec12-1, they suppressed the mutation which consists of a defect in vesicle transport. The amino acid sequence similarity, the GTP-binding activity, and the functional suppression of the yeast mutation suggest that the Bsar1 proteins are functional homologues of the Sar1 protein in S. cerevisiae and that they may perform similar biological functions.  相似文献   

10.
During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import system. A 75-kDa protein-conducting channel in the outer envelope of pea chloroplasts, Toc75, shares approximately 22% amino acid identity to a similarly sized protein, designated SynToc75, encoded in the Synechocystis PCC6803 genome. Here we show that SynToc75 is located in the outer membrane (lipopolysaccharide layer) of Synechocystis PCC6803 and that SynToc75 forms a voltage-gated, high conductance channel with a high affinity for polyamines and peptides in reconstituted liposomes. These findings suggest that a component of the chloroplast protein import system, Toc75, was recruited from a preexisting channel-forming protein of the cyanobacterial outer membrane. Furthermore, the presence of a protein in the chloroplastic outer envelope homologous to a cyanobacterial protein provides support for the prokaryotic nature of this chloroplastic membrane.  相似文献   

11.
We studied the interaction between mitochondrial precursor proteins and postulated mitochondrial surface receptor proteins, Tom20 and Tom70, by using a methodology of surface plasmon resonance. For these studies, import-competent mitochondrial precursor proteins, pCOXIV-DHFR and pSu9-DHFR, and cytosolic domains of the two receptor proteins were separately expressed in and purified from E. coli cells as a soluble form. By measuring surface plasmon resonance, both of the purified precursor proteins were found to specifically bind to either of the cytosolic domains of import receptors immobilized on a sensor chip. On the other hand, import-incompetent SynB2-DHFR and DHFR itself were shown to possess little or no binding abilities to the sensor chip, respectively. Using this system, we could demonstrate that the proposed carboxy-terminal acidic bristle domain of Tom20 is not essential for the precursor binding. Chemical modification of the acidic amino acid residues of either cytosolic domain on the sensor chip partially inhibited the binding of pSu9-DHFR, whereas the binding of pCOXIV-DHFR was almost unaffected. These results suggest that distinct set of amino acid residues of the receptor proteins might be responsible for the binding of different precursor proteins.  相似文献   

12.
We have purified 13 large subunit proteins of the mitochondrial ribosome of the yeast Saccharomyces cerevisiae and determined their partial amino acid sequences. To elucidate the structure and function of these proteins, we searched for their genes by comparing our sequence data with those deduced from the genomic nucleotide sequence data of S. cerevisiae and analyzed them. In addition, we searched for the genes encoding proteins whose N-terminal amino acid sequences we have reported previously [Grohmann, L., Graack, H.-R., Kruft, V., Choli, T., Goldschmidt-Reisin, S. & Kitakawa, M. (1991) FEBS Lett. 284, 51-56]. Thus, we were able to identify and characterize 12 new genes for large subunit proteins of the yeast mitochondrial ribosome. Furthermore, we determined the N-terminal amino acid sequences of seven small subunit proteins and subsequently identified the genes for five of them, three of which were found to be new.  相似文献   

13.
We have shown that genes for at least six human parotid proteins, parotid acidic protein (Pa), proline-rich protein (Pr), double-banded protein (Db), glycoprotein (Gl), parotid middle-band protein (Pm), and parotid-size variant (Ps) are linked. We have designated this complex of genes as the salivary protein complex (SPC). Several of the genes in this complex show marked associations that are most likely the result of linkage disequilibrium. It seems likely that the SPC arose through the process of gene duplication. This hypothesis is supported by the results of our present study that demonstrate the biochemical similarity of the protein products of several SPC genes. The amino acid compositions of the major SPC proteins are compared, including several (Ps 1 and 2, and Db) that have not been published. All of these proteins are quite similar and consist to a large extent of the amino acids, proline, glycine, and gix (glutamine and/or glutamic acid).  相似文献   

14.
The genes coding for plastocyanin (petE) and cytochrome c6 (petJ) from Anabaena sp. PCC 7119 have been cloned and properly expressed in Escherichia coli. The recombinant proteins are identical to those purified from the cyanobacterial cells. The products of both the petE and petJ genes are correctly processed in E. coli, as deduced from their identical N-terminal amino acid sequences as compared with those of the metalloproteins isolated from the cyanobacterium. Physicochemical and functional properties of the native and recombinant protein preparations are also identical, thereby confirming that expression of petE and petJ genes in E. coli is an adequate tool to address the study of the structure/function relationships in plastocyanin and cytochrome c6 from Anabaena by site-directed mutagenesis.  相似文献   

15.
16.
A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or "apicoplast," is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investigate possible functions of the apicoplast, we sought to identify nuclear-encoded genes whose products are targeted to the apicoplast in Plasmodium and Toxoplasma. We describe here nuclear genes encoding ribosomal proteins S9 and L28 and the fatty acid biosynthetic enzymes acyl carrier protein (ACP), beta-ketoacyl-ACP synthase III (FabH), and beta-hydroxyacyl-ACP dehydratase (FabZ). These genes show high similarity to plastid homologues, and immunolocalization of S9 and ACP verifies that the proteins accumulate in the plastid. All the putatively apicoplast-targeted proteins bear N-terminal presequences consistent with plastid targeting, and the ACP presequence is shown to be sufficient to target a recombinant green fluorescent protein reporter to the apicoplast in transgenic T. gondii. Localization of ACP, and very probably FabH and FabZ, in the apicoplast implicates fatty acid biosynthesis as a likely function of the apicoplast. Moreover, inhibition of P. falciparum growth by thiolactomycin, an inhibitor of FabH, indicates a vital role for apicoplast fatty acid biosynthesis. Because the fatty acid biosynthesis genes identified here are of a plastid/bacterial type, and distinct from those of the equivalent pathway in animals, fatty acid biosynthesis is potentially an excellent target for therapeutics directed against malaria, toxoplasmosis, and other apicomplexan-mediated diseases.  相似文献   

17.
Pseudomonas aeruginosa R-type pyocin particles have been described as bacteriocins that resemble bacteriophage tail-like structures. Because of their unusual structure, we reexamined whether they contained nucleic acids. Our data indicated that pyocin particles isolated from P. aeruginosa C (pyocin C) contain DNA. Probes generated from this DNA by the random-primer extension method hybridized to distinct bands in restriction endonuclease-digested P. aeruginosa C genomic DNA. These probes also hybridized to genomic DNA from 6 of 18 P. aeruginosa strains that produced R-type pyocins. Asymmetric PCR, complementary oligonucleotide hybridization, and electron microscopy indicated that pyocin C particles contained closed circular single-stranded DNA, approximately 4.0 kb in length. Examination of total intracellular DNA from mitomycin C-induced cultures revealed the presence of two extrachromosomal DNA molecules, a double-stranded molecule and a single-stranded molecule, which hybridized to pyocin DNA. Sequence analysis of 7,480 nucleotides of P. aeruginosa C chromosomal DNA containing the pyocin DNA indicated the presence of pyocin open reading frames with similarities to open reading frames from filamentous phages and cryptic phage elements. We did not observe any similarities to known phage structural proteins or previously characterized pseudomonal prt genes expressing R-type pyocin structural proteins. These studies demonstrate that pyocin particles from P. aeruginosa C are defective phages that contain a novel closed circular single-stranded DNA and that this DNA was derived from the chromosome of P. aeruginosa C.  相似文献   

18.
Notechis scutatus scutatus venom contains several toxic acidic proteins called HTa-i which promote hypotension and hemorrhage in mice. They have apparent mol. wts in the 18,000-21,000 range, i.v. LD50 values between 0.5 and 1.5 micrograms/g, and no detectable phospholipase, arginine esterase, proteolytic or hemolytic activities. A polyclonal antibody raised against HTg binds to other purified proteins, suggesting that they are isoforms of the same protein. Many other elapid crude venoms contain proteins which recognize the polyclonal antibody raised against HTg. Crotalid and viperid crude venoms do not recognize this antibody, although some of their component proteins are known to exhibit hypotensive and hemorrhagic activities. A combination of gel-filtration on Sephacryl S-200, cation-exchange and anion-exchange chromatography allows isolation of the N. s. scutatus proteins in high purity. They are the first hypotension-inducing proteins to be purified from an Australian elapid.  相似文献   

19.
The genes encoding the basic and acidic tetraheme cytochromes c3 from Desulfovibrio africanus have been sequenced. The corresponding amino acid sequences of the basic and acidic cytochromes c3 indicate that the mature proteins consist of a single polypeptide chain of 117 and 103 residues, respectively. Their molecular masses, 15102 and 13742 Da, respectively, determined by mass spectrometry, are in perfect agreement with those calculated from their amino acid sequences. Both D. africanus cytochromes c3 are synthesized as precursor proteins with signal peptides of 23 and 24 residues for the basic and acidic cytochromes, respectively. These cytochromes c3 exhibit the main structural features of the cytochrome c3 family and contain the 16 strictly conserved cysteine + histidine residues directly involved in the heme binding sites. The D. africanus acidic cytochrome c3 differs from all the other homologous cytochromes by its low content of basic residues and its distribution of charged residues in the amino acid sequence. The presence of four hemes per molecule was confirmed by EPR spectroscopy in both cytochromes c3. The g-value analysis suggests that in both cytochromes, the angle between imidazole planes of the axial histidine ligands is close to 90 degrees for one heme and much lower for the three others. Moreover, an unusually high exchange interaction (approximately 10[-2] cm[-1]) was evidenced between the highest potential heme (-90 mV) and one of the low potential hemes in the basic cytochrome c3. The reactivity of D. africanus cytochromes c3 with heterologous [NiFe] and [Fe] hydrogenases was investigated. Only the basic one interacts with the two types of hydrogenase to achieve efficient electron transfer, whereas the acidic cytochrome c3 exchanges electrons specifically with the basic cytochrome c3. The difference in the specificity of the two D. africanus cytochromes c3 has been correlated with their highly different content of basic and acidic residues.  相似文献   

20.
By fractionating conditioned medium (CM) from Drosophila imaginal disc cell cultures, we have identified a family of Imaginal Disc Growth Factors (IDGFs), which are the first polypeptide growth factors to be reported from invertebrates. The active fraction from CM, as well as recombinant IDGFs, cooperate with insulin to stimulate the proliferation, polarization and motility of imaginal disc cells. The IDGF family in Drosophila includes at least five members, three of which are encoded by three genes in a tight cluster. The proteins are structurally related to chitinases, but they show an amino acid substitution that is known to abrogate catalytic activity. It therefore seems likely that they have evolved from chitinases but acquired a new growth-promoting function. The IDGF genes are expressed most strongly in the embryonic yolk cells and in the fat body of the embryo and larva. The predicted molecular structure, expression patterns, and mitogenic activity of these proteins suggest that they are secreted and transported to target tissues via the hemolymph. However, the genes are also expressed in embryonic epithelia in association with invagination movements, so the proteins may have local as well as systemic functions. Similar proteins are found in mammals and may constitute a novel class of growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号