首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mating system and philopatry influence the genetic structure of a social group in mammals. Brandt's vole (Lasiopodomys brandtii) lives in social groups year-round and has male biased dispersal, which makes the vole a model system for studies of genetic consequences of mating system and philopatry. This study aimed to test the hypotheses that: (1) multiple paternity (MP) would exist in Brandt's voles, enhance offspring genetic diversity and reduce genetic relatedness between littermates; (2) promiscuity would occur in this species in that males and females mate with multiple partners; and (3) plural breeders of a social group would be genetically related because of philopatry of female juveniles in Brandt's voles. Paternity analysis indicated that MP occurred in 11 (46%) of 24 social groups examined and that promiscuity existed in this species. Multiple paternity litters had twice the offspring genetic diversity and half the average within-litter genetic relatedness of single paternity litters. We also found plural breeding females in six social groups. Average pairwise genetic relatedness of plural breeders ranged from 0.41 to 0.72 in four social groups, suggesting first-order kinship. Future studies need to investigate effects of reproductive skew and MP on population genetic structure of Brandt's voles.  相似文献   

2.
气味标记普遍存在于哺乳动物类群中,它能向同类传达领地占有、社会等级及繁殖状态等多种信息。2014年4月至10月,我们在内蒙古锡林郭勒正蓝旗对长爪沙鼠 (Meriones unguiculatus) 野外种群进行了标志重捕,采用中立场的方式测定了不同社群间同性别长爪沙鼠的尿标记行为。通过建立洞群样地坐标后用勾股弦方法计算群间距离,并用微卫星DNA分子标记估算个体间的亲缘系数,以探讨野生动物标记行为是否受个体间空间和遗传距离的影响。广义线性混合效应分析显示,雄鼠间的尿标记强度在繁殖期和贮食期受空间距离或遗传距离的影响均不显著。繁殖期雌鼠间的尿标记强度受空间或遗传距离的影响亦不明显,但在贮食期,遗传距离对雌鼠间标记的强度有显著影响,且遗传距离与空间距离对标记强度有明显的交互作用。本研究结果暗示亲缘关系和空间距离对长爪沙鼠的尿标记行为具有一定影响,这与长爪沙鼠的繁殖或贮食行为相适应。  相似文献   

3.
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co‐ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co‐ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re‐mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re‐mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems.  相似文献   

4.
In the first molecular study of a member of the threatened avian family, Mesitornithidae, we used nine polymorphic microsatellite loci to elucidate parentage, patterns of within-group kinship and occurrence of extra-group paternity in the subdesert mesite Monias benschi, of southwest Madagascar. We found this cooperatively breeding species to have a very fluid mating system. There was evidence of genetic monogamy and polygynandry: of the nine groups with multiple offspring, six contained one breeding pair with unrelated helpers and three contained multiple male and female breeders with related helpers. Although patterns of within-group kinship varied, there was a strong positive relationship between group size and relatedness, suggesting that groups form by natal philopatry. There was also a strong positive correlation between within-sex and between-sex relatedness, indicating that unlike most cooperatively breeding birds, philopatry involved both sexes. In contrast to predictions of kin selection and reproductive skew models, all monogamous groups contained unrelated individuals, while two of the three polygynandrous groups were families. Moreover, although between-group variation in seasonal reproductive success was related to within-group female relatedness, relatedness among males and between the sexes had no bearing on a group's reproductive output. While kin selection may underlie helping behaviour in females, factors such as direct long-term fitness benefits of group living probably determine helping in males. Of the 14 offspring produced by fully sampled groups, at least two were sired by males from neighbouring groups: one by a breeding male and one by a nonbreeding male, suggesting that males may augment their reproductive success through extra-group paternity.  相似文献   

5.
In cooperatively breeding species, restricted dispersal of offspring leads to clustering of closely related individuals, increasing the potential both for indirect genetic benefits and inbreeding costs. In apostlebirds (Struthidea cinerea), philopatry by both sexes results in the formation of large (up to 17 birds), predominantly sedentary breeding groups that remain stable throughout the year. We examined patterns of relatedness and fine-scale genetic structure within a population of apostlebirds using six polymorphic microsatellite loci. We found evidence of fine-scale genetic structure within the study population that is consistent with behavioural observations of short-distance dispersal, natal philopatry by both sexes and restricted movement of breeding groups between seasons. Global F(ST) values among breeding groups were significantly positive, and the average level of pairwise relatedness was significantly higher for individuals within groups than between groups. For individuals from different breeding groups, geographical distance was negatively correlated with pairwise relatedness and positively correlated with pairwise F(ST). However, when each sex was examined separately, this pattern was significant only among males, suggesting that females may disperse over longer distances. We discuss the potential for kin selection to influence the evolution and maintenance of cooperative breeding in apostlebirds. Our results demonstrate that spatial genetic structural analysis offers a useful alternative to field observations in examining dispersal patterns of cooperative breeders.  相似文献   

6.
Population subdivision into behaviorally cohesive kin groups influences rates of inbreeding and genetic drift and has important implications for the evolution of social behavior. Here we report the results of a study designed to test the hypothesis that harem social structure promotes inbreeding and genetic subdivision in a population with overlapping generations. Genetic consequences of harem social structure were investigated in a natural population of a highly polygynous fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae), in western India. The partitioning of genetic variance within and among breeding groups was assessed using 10-locus microsatellite genotypes for 431 individually marked bats. Genetic analysis of the C. sphinx study population was integrated with field data on demography and social structure to determine the specific ways in which mating, dispersal, and new social group formation influenced population genetic structure. Microsatellite data revealed striking contrasts in genetic structure between consecutive offspring cohorts and between generations. Relative to the 1998 (dry-season) offspring cohort, the 1997 (wet-season) cohort was characterized by a more extensive degree of within-group heterozygote excess (F(IS) = -0.164 vs. -0.050), a greater degree of among-group subdivision (F(ST) = 0.123 vs. 0.008), and higher average within-group relatedness (r = 0.251 vs. 0.017). Differences in genetic structure between the two offspring cohorts were attributable to seasonal differences in the number and proportional representation of male parents. Relative to adult age-classes, offspring cohorts were characterized by more extensive departures from allelic and genotypic equilibria and a greater degree of genetic subdivision. Generational differences in F-statistics indicated that genetic structuring of offspring cohorts was randomized by natal dispersal prior to recruitment into the breeding population. Low relatedness among harem females (r = 0.002-0.005) was primarily attributable to high rates of natal dispersal and low rates of juvenile survivorship. Kin selection is therefore an unlikely explanation for the formation and maintenance of behaviorally cohesive breeding groups in this highly social mammal.  相似文献   

7.
Among mammals, some of the most common types of cohesive social groupings originate from natal philopatry through the extended mother family. This retention of females within social groups (i.e. the nonrandom dispersion of female relatives in space) should affect population genetic structure. We examined the relationship between genetic relatedness and female spatial organization in a wild population of the North-American raccoon, Procyon lotor, a solitary carnivore in east Tennessee. Multilocus genetic band-sharing data and 3(1/2) years of radiotelemetry observations were used to study the spatial and genetic relationships among 38 adult females. DNA amplification employing primers of arbitrary sequence (random amplified polymorphic DNA; RAPD) indicated that female philopatry in raccoons led to a greater likelihood of neighbours being more related than expected by chance. Genetic distance based on RAPD band frequency was positively correlated with spatial distance among females (P = 0.0001) and genetic similarity was positively correlated with the extent of home-range overlap (P = 0.0028). Philopatry seemed biased towards females; average female-female similarities were greater than average male-male similarities (P = 0.0001), or average male-female similarities (P = 0.0001). High home-range overlap among some females with low or moderate levels of band sharing indicated that maternal inheritance of space was not a prerequisite for establishing or sharing home ranges. Female philopatry was the most probable explanation for the nonrandom spatial and genetic association of raccoons in east Tennessee.  相似文献   

8.
Gene flow within and between social groups is contingent on behaviourally mediated patterns of mating and dispersal. To understand how these patterns affect the genetic structure of primate populations, long-term data are required. In this study, we analyse 10 years of demographic and genetic data from a wild lemur population (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar. Our goal is to specify how patterns of mating and dispersal determine kinship and genetic diversity among animals in the population. Specifically, we use microsatellite, parentage, and census data to obtain estimates of genetic subdivision (FST), within group homozygosity (FIS), and relatedness (r) within and among social groups in the population. We analyse different classes of individuals (i.e. adults, offspring, males, females) separately in order to discern which classes most strongly influence aspects of population structure. Microsatellite data reveal that, across years, offspring are consistently more heterozygous than expected within social groups (FIS mean = -0.068) while adults show both positive and negative deviations from expected genotypic frequencies within groups (FIS mean = 0.003). Offspring cohorts are more genetically subdivided than adults (FST mean = 0.108 vs. 0.052) and adult females are more genetically subdivided than adult males (FST mean = 0.098 vs. 0.046). As the proportion of females in social groups increases, the proportion of offspring sired by resident males decreases. Offspring are characterized by a heterozygote excess as resident males (vs. nonresident males) sire the majority of offspring within groups. We link these genetic data to patterns of female philopatry, male dispersal, exogamy, and offspring sex-ratio. Overall, these data reveal how mating and dispersal tactics influence the genetic population structure in this species.  相似文献   

9.
The European wild rabbit (Oryctolagus cuniculus) lives in stable, territorial breeding groups, with male-biased natal dispersal, female philopatry, and a polygynous mating system. It was introduced into Britain in the 11 th century and kept in captive warrens as a food and fur resource. Populations expanded in the wild in the 18th century. Microsatellite markers were employed to examine the genetic structure of wild rabbit populations on three spatial scales: macrogeographic structure of 17 populations in East Anglia, microgeographic structure of a tagged population in the grounds of the University of East Anglia over four consecutive years, and pairwise kinships and individual movement within this tagged population. Populations across East Anglia were found to be genetically distinct, and heterozygote deficits were observed at all loci indicating sub-division within sampled populations. Analysis of the tagged population confirmed that rabbit populations are genetically sub-divided among social groups. Studying this population over four consecutive years revealed that as the population size increased, the number of social groups increased. Analysis of individual pairwise relatedness of females indicated that individuals did not necessarily group with kin, and behavioural data indicate that an optimum group size may exist which maximizes reproductive success.  相似文献   

10.
In cooperatively breeding apostlebirds Struthidea cinerea philopatry by both sexes is coupled with low levels of dispersal, resulting in large groups (up to 17 birds) that may include multiple males and females of varying age and relatedness. We investigated mating patterns within 18 groups of apostlebirds using a set of six polymorphic microsatellite loci. Apostlebirds appear to adopt flexible and context-dependent mating strategies, with both monogamy and polygamy detected in separate groups. Most groups (11/18, 17/26 group-seasons) were putatively monogamous, with a single pair matching all typed offspring. Despite the potential for inbreeding, members of breeding pairs were less closely related than other potential within-group mating combinations. Polygamy was inferred in four groups (four group-seasons) from the presence of more than four alleles at one locus among offspring within a brood. Pairwise relatedness was lower among adults in polygamous groups than those in groups that included a monogamous breeding pair. There was no conclusive evidence of extra-group paternity or egg dumping.  相似文献   

11.
The genetic structure of a group or population of organisms can profoundly influence the potential for inbreeding and, through this, can affect both dispersal strategies and mating systems. We used estimates of genetic relatedness as well as likelihood-based methods to reconstruct social group composition and examine sex biases in dispersal in a Costa Rican population of white-throated magpie-jays ( Calocitta formosa , Swainson 1827), one of the few birds suggested to have female-biased natal philopatry. We found that females within groups were more closely related than males, which is consistent with observational data indicating that males disperse upon maturity, whereas females tend to remain in their natal territories and act as helpers. In addition, males were generally unrelated to one another within groups, suggesting that males do not disperse with or towards relatives. Finally, within social groups, female helpers were less related to male than female breeders, suggesting greater male turnover within groups. This last result indicates that within the natal group, female offspring have more opportunities than males to mate with nonrelatives, which might help to explain the unusual pattern of female-biased philopatry and male-biased dispersal in this system. We suggest that the novel approach adopted here is likely to be particularly useful for short-term studies or those conducted on rare or difficult-to-observe species, as it allows one to establish general patterns of philopatry and genetic structure without the need for long-term monitoring of identifiable individuals.  相似文献   

12.
D. J. Melnick 《Genetica》1987,73(1-2):117-135
Primates, as long-lived, iteroparous, socially complex mammals, offer the opportunity to assess the effects of behavior and demography on genetic structure. Because it is difficult to obtain tissue samples from wild primate populations, research in this area has largely been confined to terrestrial and semi-terrestrial old world monkeys (e.g., rhesus and Japanese macaques, vervets and several subspecies of baboons). However, these species display a multi-male, multi-female social structure commonly found in many other primate and non-primate mammals. Electrophoretic analyses of blood proteins from individually recognized and/or marked wild Himalayan rhesus monkeys, themselves the subject of long-term behavioral and demographic research, have begun to reveal the genetic consequences of such phenomena as social group fission, malelimited dispersion, non-consanguineous mating patterns, and agonistically defined male dominance.Specifically, rhesus social groups, consisting primarily of clusters of maternal relatives, appear to be nonrandom samples of a population's genotypes and genes. The genetic effects of social group fission are highly dependent on each group's size, demographic structure, and average degree of relatedness. In all cases fission contributes to the degree of intergroup genetic differentiation. Male-limited dispersion appears both to retard genetic differentiation between social groups and to lead to mating patterns that result in an avoidance of consanguinity. Groups, therefore, appear to be genetically outbred.Comparing these results with studies of other free-ranging or wild cercopithecines allows several generalizations: (a) genetic variation seems to be evenly distributed throughout each local population of multi-male social groups; (b) social groups, however, because they contain clusters of relatives, are distinctive in their specific frequencies of genes; (c) the degree of genetic differentiation between a population's social groups, because of the effects of social group fission and non-deterministic forms of male dispersal, is somewhat greater than expected on the basis of migration rates alone; and (d) the asymmetrical pattern of dispersion with respect to sex effectively precludes inbreeding in any one social group or the population as a whole. These observations have important implications for understanding the unusually rapid rates of evolution among the primates.  相似文献   

13.
In this study we used data from six unlinked microsatellite loci to examine stable aggregations of Egernia stokesii, from a population in the southern Flinders Ranges of South Australia. We show that these aggregations are comprised of breeding partners, their offspring from two or more cohorts, and related adults, providing the first genetic evidence of a family structure in any lizard species. Despite this high level of relatedness within aggregations, most breeding pairs were unrelated and partners were less closely related to each other than they were to other potential within-group partners. Where individuals dispersed, both sexes usually moved to social groups close to their natal group. Although both sexes showed natal philopatry, there was some evidence that females in groups were more related than males in groups. These data suggest that an active choice of unrelated partners and male-biased dispersal may be the mechanisms used by E. stokesii to avoid inbreeding within groups.  相似文献   

14.
While habitat alteration has considerable potential to disrupt important within-population processes, such as mating and kin structure, via changed patterns of dispersal, this has rarely been tested. We are investigating the impact of anthropogenic habitat alteration on the population biology of the rock-dwelling Australian lizard Egernia cunninghami on the Central Tablelands of New South Wales, Australia, by comparing deforested and adjacent naturally vegetated areas. The novel analyses in this paper, and its companion, build on previous work by adding a new replicate site, more loci and more individuals. The additional microsatellite loci yield sufficient power for parentage analysis and the sociobiological inferences that flow from it. Genetic and capture-mark-recapture techniques were used to investigate mate and site fidelity and associated kin structure. Analyses of the mating system and philopatry using 10 microsatellite loci showed high levels of site fidelity by parents and their offspring in natural and deforested habitats. Parentage assignment revealed few individuals with multiple breeding partners within seasons and fidelity of pairs across two or more breeding seasons was typical. Despite reduced dispersal, increased group sizes and significant, dramatic increases in relatedness among individuals within rock outcrops in deforested areas, no significant differences between deforested and natural areas were evident in the degree of multiple mating or philopatry of breeding partners within and across seasons. With the exception that there was a significantly higher proportion of unmated males in the deforested area, the social and mating structure of this species has so far been surprisingly robust to substantial perturbation of dispersal and relatedness structure. Nonetheless, approximately 10-fold elevation of mean pairwise relatedness in the deforested areas has great potential to increase inbred matings, which is investigated in the companion paper.  相似文献   

15.
Certain Behavioral Traits of Small Mammals in Abnormal Social Environment   总被引:1,自引:0,他引:1  
In a social vacuum following a catastrophic decline in population density of small mammals, species-specific adaptive behavioral mechanisms optimizing reconstitution of the spatial and social structure are manifested to a different extent in different species. At the same time, the rate of structure and population recovery depends on specific social organization of a species. The field observation data on the behavior of three species, Pallas' pika as well as Mongolian and midday gerbils, in an experimentally depleted population are presented. Mongolian gerbil living in family groups demonstrated developed adaptive mechanisms of this kind in contrast to two other species with pronounced individual territorialism.  相似文献   

16.
Social groups occur in many rodents and vary in size and complexity under varying environments. Food availability is often limited in northern temperate regions and alters the life history and behavior of rodents. Increased food availability is hypothesized to increase the size and complexity of rodent social groups by enhancing individual survival and philopatry. We tested this hypothesis in Mongolian gerbils Meriones unguiculatus under semi-natural conditions in Inner Mongolia, China. The Mongolian gerbil is a cooperative breeder living in groups year-round. Gerbil colonies in 10 m × 10 m chambers were the experimental units, with four replicate chambers each for food supplementation and food unsupplemented controls in 2004 and six replicate chambers for each treatment in 2005. At 2-day intervals wheat grain supplemented the normal food in experimental chambers throughout the breeding season (May through August). We estimated founder mortality, cumulative recruitment, proportion of philopatric juveniles, ages at sexual maturity and social group size in each colony from May through August. Rates of change in group size were inversely related to social group size. The social organization of Mongolian gerbils did not differ in any of the measured parameters between food-supplemented and -unsupplemented chambers. Therefore, additional food does not influence the social organization of Mongolian gerbils during the breeding season.  相似文献   

17.
Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F ST estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F ST values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.  相似文献   

18.
Most social mammal species exhibit male-biased dispersal. Sex bias in dispersal leads to a higher degree of relatedness among individuals of the philopatric sex, thus an atypical dispersal pattern might lead to deviations in the typical within-group kinship structure. Kinship, in turn, influences patterns of social interactions, as widely evident by kin-biased behaviors. We investigated the link between dispersal, relatedness structure, and sociopositive interactions established by adult females of black capuchin monkeys (Sapajus nigritus) living in a population that experiences female dispersal, an unusual pattern for capuchin monkeys. The study was conducted in Parque Estadual Carlos Botelho (PECB), within the Brazilian Atlantic Forest. We addressed dispersal and relatedness patterns by genotyping 20 adults of 3 groups across 9 microsatellite loci. We also sampled the monkeys’ behavior and compared spatial association frequencies and rates of grooming among same- and opposite-sex dyads. There was no difference between males and females in genetic parameters; both males and females show low coefficients of relatedness indicating that neither sex is consistently philopatric. The mean pairwise coefficient of relatedness for co-resident females was not higher than that for co-resident males. Compared to other populations of capuchin monkeys, female bond was weak, as evident by lower spatial association frequencies, reduced rates of grooming and lack of correlation between coefficients of relatedness and measures of dyadic sociopositive interactions. Our findings thus confirm that female dispersal is a habitual process in the capuchin population of PECB, and that, as expected, dispersal by females strongly influences the relatedness structure of the population as well as the affiliative relationships among female groupmates.  相似文献   

19.
Wild boars Sus scrofa have a social organization based on female groups that can include several generations of adults and offspring, and are thus likely matrilineal. However, little is known about the degree of relatedness between animals living in such groups or occupying the same core area of spatial activity. Also, polygynous male mating combined with matrilineal female groups can have strong influences on the genetic structure of populations. We used microsatellite genotyping combined with behavioral data to investigate the fine-scale population genetic structure and the mating system of wild boars in a multi-year study at Châteauvillain-Arc-en-Barrois (France). According to spatial genetic autocorrelation, females in spatial proximity were significantly inter-related. However, we found that numerous males contributed to the next generation, even within the same social group. Based on our genetic data and behavioral observations, wild boars in this population appear to have a low level of polygyny associated with matrilineal female groups, and infrequent multiple paternity. Mortality due to hunting may facilitate the breakup of what historically has been a more predominantly polygynous mating system, and likely accelerates the turnover of adults within the matrilineal groups.  相似文献   

20.
The genetic structure of a free-living tagged population of European wild rabbits (Oryctolagus cuniculus) was investigated for two consecutive years (1990 and 1991) using 10 polymorphic microsatellite loci. A specific social behaviour, the formation of stable breeding groups, influenced the genetic structure of the population. These breeding groups were shown to constitute genetically differentiated units with low levels of gene flow between them. The average relatedness among members of a social group was higher than within the population as a whole. As a result of female philopatry coupled with male-biased natal dispersal, the relatedness of females was higher than that of males, both within social groups and in the whole population. Furthermore, the average relatedness of females within groups was twice the relatedness of females between groups. This study reveals marked fine-scale, intrapopulation genetic structure, which is attributable to the social behaviour of the European wild rabbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号