首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immersion corrosion tests of TiC0.8, TiC, TiC–20 vol% SiC, TiC–40 vol% SiC and SiC have been performed in molten FLiNaK salt at 800 °C for 25–200 h under argon cover gas. All of these five samples showed small mass loss and relatively good corrosion resistance in molten FLiNaK salt. The corrosion patterns of TiC0.8, TiC, TiC–20 vol% SiC and TiC–40 vol% SiC were inter-granular corrosion, which were attributed to the depletion of Ti along the grain boundaries. SiC exhibited a general corrosion process in which a carbon-rich layer formed on the surface, resulting from the depletion of Si. The carbon-rich layer protected SiC against further corrosion, hence lowering the corrosion rate. The corrosion results of TiC–20% SiC and TiC–40% SiC revealed the corrosion resistance of TiC could be improved by adding SiC. And the contribution of SiC to better corrosion resistance has been elucidated.  相似文献   

2.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   

3.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   

4.
The corrosion of polycrystalline Ti3SiC2 was studied in the eutectic Li2CO3 (68 at.%) and K2CO3 (32 at.%) mixture at 650–850 °C. Ti3SiC2 exhibited better corrosion resistance at 650 °C. However, the mass loss was fast when temperature was above 700 °C. It was demonstrated that the surface chemical reaction-controlled shrinking core model could be applied to describe the relationship between the degree of the corrosion and reaction time for the corrosion of Ti3SiC2 in the 700–850 °C temperature range. The corresponding apparent activation energy was 206 kJ/mol. Corrosion resulted in roughness of specimen surface. The fracture strength of the corroded samples was evaluated by a three-point bending test. The results showed that the degradation of the fracture strength was about 25% of the original values for the corroded specimens up to 10% weight loss. The mechanism of the strength degradation was discussed based on the analysis of the microstructure and composition of the corroded sample.  相似文献   

5.
In this paper, the two-dimensional (2D) (0°/90°) plain-woven Amosic-3 SiC/SiC turbine guide vane (TGV) was fabricated using the chemical vapor infiltration method. Thermal and stress analysis of the TGV was conducted using the finite element method analysis. Multiple thermal shock tests at T = 1250, 1350, 1400, 1420, 1450, 1470, and 1480°C were conducted for N = 100, 100, 400, 300, 200, 200, and 700 cycles. After thermal shock tests, the surface damage of the TGV was observed visually, and the micro damage mechanism was analyzed using the scanning electronic microscopy. Micro X-ray computed tomography was adopted to characterize the internal damages in the SiC/SiC guide vanes. The delamination occurred at the positions approaching internal hollow, due to the weak binding force along the thickness direction and the high thermal shock stress caused by the temperature change. The diameter, area, volume, and sphericity distributions of the pores inside of the guide vanes were also obtained.  相似文献   

6.
7.
《Ceramics International》2022,48(10):13659-13664
Metallurgical solid waste recycling is the shape of things to come in green development of Chinese iron and steel industry. Utilization of ironworks slag for producing mineral wool at high temperature is an important approach. However, refractory lining is seriously corroded by the SiO2–MgO based slag at 1600 °C during the production process. Different production steps need different atmospheres, the changeable service atmospheres (air and reducing atmosphere) put forward high requirements for slag resistance. The Al2O3–SiC–C castables containing carbon black are usually used in iron runner, which faces high-temperature service condition of 1450 °C–1500 °C. Nevertheless, the function of carbon black in the Al2O3–SiC–C castables at 1600 °C is till essentially unknown. In the current study, the carbon black was introduced to tabular alumina based Al2O3–SiC–C castables to improve corrosion resistance to SiO2–MgO based slag at 1600 °C. The result showed that 0.4 wt% carbon black was suitable for the castables, which the slag resistance of castables was significantly improved. The carbon black had contributed to block slag by wettability resistance. By comparison with the castables without carbon black, the corrosion index and penetration index had been reduced by 20.2% and 28.0%, respectively, under air atmosphere. And there were little corrosion or penetration under reducing atmosphere for castables with 0.4 wt% carbon black. For the mechanical properties, the Al2O3–SiC–C castables with 0.4 wt% carbon black could serve production process although the carbon black impaired the physical properties.  相似文献   

8.
Time and temperature dependence of Na2SO4‐induced hot corrosion were studied for sintered‐α (Hexoloy) as well as CVD‐SiC at temperatures between 900°C and 1100°C and at times from 0.75 to 96 h. The extent of corrosion was quantified using mass change measurements, removal of corrosion products using sequential water, HCl, and HF dissolution steps followed by ICP‐OES analysis, and by optical profilometry of corroded materials to characterize pitting on the sample surface. In addition, SEM, EDS, and XRD were used to better understand the morphology, distribution, and phase composition of corrosion products. It was found that hot corrosion of Hexoloy was more severe than that of high‐purity CVD‐SiC. Hot corrosion is initially rapid until a continuous silica layer is formed underneath the mixed silicate layer. Once a continuous silica layer was formed the temperature dependence of the corrosion rate was consistent with diffusion of oxygen through the silica layer.  相似文献   

9.
6H–SiC single crystals and two types of SiC fibers, Hi‐Nicalon type S and Tyranno SA3, have been irradiated with 4‐MeV Au3+ up to 2 × 1015 cm?2 (4 dpa) at room temperature, 100°C and 200°C. These fibers are composed of highly faulted 3C–SiC grains and free intergranular C. Stacking fault linear density and grain size estimations yield, respectively, 0.29 nm?1 and 26–36 nm for the Hi‐Nicalon type S fibers and 0.18 nm?1 and 141–210 nm for the Tyranno SA3 fibers. Both transmission electron microscopy and surface micro‐Raman spectroscopy reveal the complete amorphization of all the samples when irradiated at room temperature and 100°C and a remaining crystallinity when irradiated at 200°C. The latter observations reveal a multi‐band irradiated layer consisting in a partially amorphized band near the surface and an in‐depth amorphous band. Also, nanocrystalline SiC grains with high stacking fault densities can be found embedded in amorphous SiC at the maximum damage zone of the Hi‐Nicalon type S fibers irradiated at 200°C.  相似文献   

10.
《Ceramics International》2020,46(7):8536-8542
Porous SiC ceramic membrane supports are widely employed in a wide variety of high-temperature applications, such as hot flue gas filtration, porous burners and molten metal filters. Herein, SiC supports, with a porosity of ~37%, were prepared by using low-temperature bonding techniques and the influence of different bonding phases, such as mullite, cordierite and glass, on ambient-temperature flexural strength, hot modulus of rupture (HMOR), thermal shock resistance and oxidation resistance were systematically investigated. The results reveal that the glass-bonded SiC (GBSC) support exhibited the highest ambient-temperature flexural strength of 33.6 MPa, whereas the flexural strength of mullite-bonded SiC (MBSC) and cordierite-bonded SiC (CBSC) supports ranged from 22 to 25 MPa. However, the presence of glass phase deteriorated the high-temperature properties of the support. MBSC support rendered superior mechanical strength at high temperature and self-strengthening in a certain temperature range, such as HMOR improved 47.5% at 900 °C, but HMOR of glass-bonded support was only 57.4% of the ambient-temperature strength. Moreover, MBSC and CBSC supports exhibited better thermal shock resistance than GBSC supports and the critical temperature difference of water quenching for MBSC supports was ~200 °C higher than GBSC supports. In addition, MBSC support rendered superior oxidation resistance and exhibited a weight gain rate of ~0.1% at 1150 °C for 24 h, which is 54.4% and 42.2% lower than CBSC and GBSC supports, respectively.  相似文献   

11.
《Ceramics International》2020,46(14):22307-22312
In this study, the alumina matrix with SiC particle reinforcement has been produced using direct oxidation of the molten metal (DIMOX) method. For this purpose, oxidation of SiC particles was applied to increase the wettability of reinforcements using molten aluminum. The effect of adding Zn and Mg as alloying elements to aluminum on continuous aluminum oxidation has been investigated. Furthermore, the possibility of controlled growth of the composite matrix and its penetration in the preform, which was prepared from the reinforcing particles, have been examined. Fabrication conditions, i.e., temperature and duration of directed oxidation at 1170 °C for 27 h and 950 °C for 40 h, have been investigated. Finally, the result indicated that the fabrication of this composite with an alloy containing 5 wt % Zn and 8 wt % Mg heated to 950 °C for 40 h is possible. Also, the microstructure and phases have been characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS).  相似文献   

12.
Composites consisting of 70 vol% ZrB2 and 30 vol% α‐SiC particles were hot pressed to near full density and subsequently annealed at temperatures ranging from 1000°C to 2000°C. Strength, elastic modulus, and hardness were measured for as‐processed and annealed composites. Raman spectroscopy was employed to measure the thermal residual stresses within the silicon carbide (SiC) phase of the composites. Elastic modulus and hardness were unaffected by annealing conditions. Strength was not affected by annealing at 1400°C or above; however, strength increased for samples annealed below 1400°C. Annealing under uniaxial pressure was found to be more effective than annealing without applied pressure. The average strength of materials annealed at 1400°C or above was ~700 MPa, whereas that of materials annealed at 1000°C, under a 100 MPa applied pressure, averaged ~910 MPa. Raman stress measurements revealed that the distribution of stresses in the composites was altered for samples annealed below 1400°C resulting in increased strength.  相似文献   

13.
Pyroprocessing technology is one of the most promising technologies for an advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. In pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite and a key issue in the industrialization of pyro-reprocessing. However, there have been a few transport studies on high-temperature molten salt. Three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated, a suction pump transport method was selected for molten salt transport owing to its flexibility. An apparatus for suction transport experiments was designed and installed for the development of high temperature molten salt transport technology. About 2 kg of LiCl–KCl eutectic salt was prepared by mixing 99.0%, LiCl and KCl and drying in a convection dry oven at 200 °C for 1 h. Predissolution tests of the prepared LiCl–KCl eutectic salt using the melting reactor of the experimental apparatus was carried out to investigate the dissolution behavior of the prepared LiCl–KCl eutectic salt. From the results of the pre-dissolution test, it was found that prepared LiCl–KCl eutectic salt was well dissolved at 500 °C. High temperature molten salt transport experiments by suction are currently being performed using the prepared LiC–KCl eutectic salt. The preliminary experimental results of lab-scale molten salt transport showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 m torr–10 torr at 500 °C.  相似文献   

14.
In the present work, a two‐step carbothermal reduction method is employed to prepare the AlN–SiC solid solution (AlN–SiCss) powders by using a combustion synthesized precursor. The precursor is prepared by low‐temperature combustion synthesis (LCS) method using a mixed solution of aluminum nitrate, silicic acid, polyacrylamide, glucose, and urea. The synthesized LCS precursor exhibits a porous and foamy uniform mixture of Al2O3 + SiO2 + C consisting of flaky particles. The carbothermal reduction in the LCS precursor is carried out in two steps. First, the precursors are calcined at 1600°C in argon for 3 h. Subsequently, the precursors are further calcined at 1600°C–1900°C in nitrogen for 3 h. The results indicate that the precursor calcined at and above 1850°C in nitrogen for 3 h yields the single‐phase AlN–SiCss powders. The synthesized AlN–SiCss powder exhibits near‐spherical particles with diameter of 200–500 nm. The experimental and thermodynamical results reveal that the formation of AlN–SiCss occurs via the diffusion of AlN into SiC by virtue of formation of a highly defective β′ intermediate during the second step reaction.  相似文献   

15.
Corrosion behaviors of the porous alumina-based ceramic core materials in KOH and NaOH solution were investigated. Corrosion tests were carried out at 100°C, 150°C, and 200°C, and the concentration of KOH and NaOH was 50, 67, and 75 wt%, respectively. The results indicated that the optimal concentration was 67 wt% for KOH solution and 50 wt% for NaOH solution, respectively. Increasing corrosion temperature and prolonging corrosion time were helpful to enhance the corrosion effect, and temperature played an extra important role during the whole corrosion process. NaOH solution was better than KOH solution for corrosion at the same temperature and concentration.  相似文献   

16.
《Ceramics International》2023,49(15):25576-25584
To achieve microwave-infrared compatible stealth in high temperature conditions, high-entropy alloys (HEAs) thin films were deposited on Al2O3 matrix by magnetron sputtering technology. Films were annealed to investigate thermal stability at 500 °C, 600 °C and 700 °C, respectively. Results from X-ray diffract meter (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), and Fourier transform infrared spectrometer (FTIR) suggested that high-entropy alloy (HEA) film was seriously oxidized when the annealed temperature reached 700 °C for 6 h, causing a significant decrease of infrared reflectivity. Conversely, HEA films showed low infrared emissivity of 0.09 at 600 °C. Additionally, the films possessed excellent thermal stability at 500 °C for 20 h with low infrared emissivity of 0.11. Finally, a simple metamaterial design utilizing HEA films was proposed for infrared-microwave compatible stealth. With the ability of incorporating excellent thermal stability and durable high temperature stealth performance, the study shows great potential of introducing HEAs in the field of high temperature compatible stealth.  相似文献   

17.
The present work is aimed at the study of the unirradiated and irradiated MgO ceramics corrosion and mechanical properties in the molten LiCl at 650–750 °C with addition of UCl3 and Li2O(LiCl + nLi2O and LiCl + mUCl3 molten salts with n = 1.0 and 2.0 mol. % and m = 0.25, 0.5 and 1.0 mol. %). MgO ceramics is suggested to be used as one of materials for pyrochemical technology for recycling of spent nuclear fuel.The gravimetric method with the exposure time during 100 h was the primary method of investigation. The investigation of surface and bulk corrosion of MgO samples by scanning electron microscopy (SEM) and X-ray spectroscopy (MRSA) was performed using scanning electron microscope equipped with a x-Act 6 energy-dispersive analytic system for X-rays characteristic (XRС). Determination of corrosion losses and average corrosion rates of MgO samples was based on the assumption that the ejection of the radionuclides 95Zr, 175Hf and 181Hf from the MgO samples.Incorporation of Li2O and UCl3 in molten LiCl result in increase in the rate of MgO ceramic corrosion both at 650 °C and 750 °C and acts on MgO compressive strength (σcs) and on the elemental composition of MgO surface layers. Besides the increasing of UCl3 concentration led to the bulk corrosion of MgO sample grains.Short-term mechanical tests demonstrated the transition of MgO sample destruction pattern depending on the concentration of Li2O and UCl3 additions in LiCl melt.Doping of molten LiCl by 0.5 mol. % of UCl3 at 650 °C and by 0.25 mol. % of UCl3 at 750 °C had no influence on the ultimate compression strength of irradiated and unirradiated MgO samples. Increased UCl3 concentration totaling 0.5 mol. % in the LiCl melts at 750 °C reduced the ultimate compression strength of irradiated MgO ceramic samples by ~15%.  相似文献   

18.
Hi‐Nicalon?‐S SiC fiber was heat treated for 1 hour at 1300°C, 1400°C, and 1500°C in argon with pO2 of 3.7, 10, 20, 50, 100, and 200 ppm. Fiber strengths were measured by 30 single‐filament tensile tests. Fiber microstructure and surface morphology were characterized by TEM. Active oxidation occurred in all cases except at 1500°C with 200 ppm pO2, 1400°C with 100 ppm pO2 or higher, and 1300°C with 50 ppm pO2 or higher. When active oxidation did not occur, a glass SiO2 scale formed at 1300°C and 1400°C, and a cristobalite scale formed at 1500°C. The thickness of these scales was much larger than that predicted by linear dependence of oxidation rate on pO2. Fiber strengths were lowest after heat treatment at 1300°C and a pO2 of 3.7 ppm, 1400°C and a pO2 of 20 ppm, and 1500°C and a pO2 of 200 ppm. Active oxidation caused fiber surface roughening, but no obvious changes to the internal fiber microstructure. Decreased fiber strength correlated with increased fiber surface roughness, but roughness magnitudes were not large enough to explain the amount by which strength was degraded. Fiber strengths, surface roughness, scale thicknesses, and the passive‐active oxidation transition for SiC are compared with previous observations. Possible strength degradation mechanisms are discussed.  相似文献   

19.
Homemade nano-agglomerated powders 8YSZ powders for PS-PVD were prepared by the spray drying, then calcination processes at four different temperatures (500 °C, 700 °C, 900 °C and 1100 °C) were carried out on the spray-dried powders. Checked by laser particle sizer, scanning electron microscope (SEM) and X-ray diffraction (XRD), the physical properties, microstructure and phase constitutions of the calcined powders were investigated. The results show that the size of powders calcined at 500 °C is increased relative to the spray-dried powder, whereas the powders calcined at 700 °C, 900 °C and 1100 °C possess smaller size. The binding force of the primary particles tend to rise with the increase of calcination temperature. When the temperature was up to 900 °C and above, it was found that the sintering neck indicating with strong binding was formed between the primary particles. In parallel, the powders underwent an m-ZrO2 to t-ZrO2 transition as the calcination temperature rose. It is also found that the PS-PVD prepared coatings which were obtained by using the above powders undergo a transformation from a feather-like to a dense laminate structure as the calcination temperature rises. It is noteworthy that the coating obtained by the powders calcined at 700 °C have a special three-layer composite structure of near dense surface layer, columnar intermediate layer and dense sub-layer. The composite structural coating has excellent adhesion and thermal shock resistance, with a bonding strength of 81MPa and no major spalling when water quenched 100 cycles at 1100 °C.  相似文献   

20.
《Ceramics International》2022,48(8):11009-11017
Silicon carbide (SiC) is one of the promising candidates for graphite protection in different applications involving high temperatures and a highly corrosive environment. An ideal Silicon carbide coating should withstand a corrosive environment without compromising its adhesion. Herein, RF magnetron sputtered silicon-rich SiC thin films were deposited on a graphite substrate followed by annealing at 1000 °C, 1200 °C, and 1400 °C in an inert atmosphere. The impact of annealing temperature on microstructure, adhesion and chemical stability of SiC thin films was demonstrated. Different analytical techniques like Scanning electron microscopy (SEM), X-Ray Diffraction (XRD), Fourier's Transform Infrared (FTIR) spectroscopy and nano-indentation were used to study microstructural evaluation and mechanical characteristics. Moreover, the electrochemical analysis (Tafel and Electrochemical impedance spectroscopy) was performed in 3.5% NaCl solution. The microstructural analysis revealed that the amorphous SiC thin film turned into a crystalline and dense film upon annealing. Scanning electron micrographs showed that silicon-rich regions at SiC film surface started to disappear as Si diffuses into graphite matrix at elevated temperatures. Both these factors contributed to improvement in the adhesion of SiC coating with graphite substrate as annealing temperature increased. In addition, the nano-indentation hardness of 5.2 GPa was obtained for as grown sample, which decreased at 1000 °C, and then increased at 1200 °C and 1400 °C. Furthermore, the electrochemical analysis confirmed the enhancement in corrosion resistance upon annealing at a temperature of 1200 °C and 1400 °C due to Si diffusion and film compactness in these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号