首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
目的研究骨保护素(Osteoprotegerin, 0PG)抑制核因子NF-KB受体活化因子配体(Receptor activator of nuclear kappa B ligand,RANKL)诱导小鼠单核细胞RAW264. 7成熟分化而导致的溶骨效 应。方法50 ng/mL RANKL诱导RAW264. 7细胞1 d后,加人100 ng/mL 0PG(实验组,即0PG + RANKL组)或不加人0PG(对照组,即RANKL组)分别培养7 d和9 d,经细胞形态学观察其变化,抗 酒石酸酸性碟酸酶(Tartrate resistant acid phosphatase, TRAP)染色法观察TRAP阳性多核细胞,扫描 电镜下观察在骨片上的破骨细胞所致的骨吸收陷窝形成情况。结果对照组培养7 d时,在倒置相 差显微镜、透射电镜、光镜下可见细胞形状为椭圆形或不规则形,胞体明显较KAW264.7细胞增大, 胞核多为6 ~ 10个,扫描电镜下还可见大量伪足形成,而实验组培养7 d后,细胞形状多为圆形,且扫 描电镜下未见明显伪足形成;对照组9 d时可见大量TRAP染色阳性的多核巨细胞(含3个或3个以 上的细胞核),而实验组中TRAP染色阳性的多核破骨细胞偶见多核巨细胞,培养9 d时很难找到多 核巨细胞;仅用RANKL诱导RAW264.7细胞分化7 d时,对照组中破骨细胞表面可见大量伪足伸出, 并形成明显的骨吸收陷窝,实验组中破骨细胞见少许伪足突出,不能看到明显的骨陷窝形成。结论 单用50 ng/mL RANKL体外连续诱导RAWM4.7细胞7 d时,可以促进成熟的破骨细胞显著分化。 100 ng/mL 0PG培养9 d能有效地抑制破骨细胞的分化,减少破骨细胞的骨吸收效应。  相似文献   

2.
目的研究结缔组织生长因子(CTGF)对体外培养的破骨细胞前体细胞RAW264.7增殖及对核因子Kappa B配体受体(RANKL)诱导体外培养的破骨细胞前体细胞RAW264.7分化为成熟多核破骨细胞的影响。方法使用200 ng/mLCTGF干预培养的破骨细胞前体细胞RAW264.7,采用3H-TdR掺入法检测RAW264.7细胞增殖率;使用200 ng/mL CTGF与RANKL单独或共同处理RAW264.7细胞,抗酒石酸酸性磷酸酶(TRAP)染色观察TRAP阳性多核细胞,Western blot检测碳酐酶Ⅱ蛋白的表达。结果 CTGF可显著促进RAW264.7细胞增殖;200 ng/mLCTGF与RANKL共同处理RAW264.7细胞可促进RAW264.7细胞分化为成熟多核破骨细胞;200 ng/mL CTGF与RANKL共同处理RAW264.7细胞可促进RAW264.7细胞碳酐酶Ⅱ蛋白的表达。结论 CTGF促进体外培养的破骨细胞前体细胞RAW264.7增殖,促进RANKL诱导的破骨细胞前体细胞RAW264.7分化为成熟多核破骨细胞。  相似文献   

3.
RANKL诱导小鼠单核细胞RAW264.7分化成成熟破骨细胞   总被引:3,自引:0,他引:3       下载免费PDF全文
目的观察小鼠的单核/巨噬细胞RAW264.7的一般生物学特征及在RANKL诱导下形成成熟破骨细胞的特征。方法RANKI,诱导RAW264.7细胞6d后,用抗酒石酸酸性磷酸酶(TRAP)染色法观察TRAP阳性多核细胞,吖啶橙染色激光共聚焦显微镜(LCSM)观察多核细胞形态;诱导RAW264.7细胞9d后,RT、PCR检测RAW264.7细胞的破骨细胞表型和功能基因表达及其RANKL诱导后变化;诱导RAW264.7细胞12d后,钙磷覆盖的破骨细胞活性分析板观察破骨细胞的骨吸收功能。结果RAW264.7细胞TRAP染色阴性,单核或2个核,能表达破骨细胞表型和功能基因,无骨吸收功能。RANKL可诱导RAW264.7细胞形成TRAP阳性成熟的多核破骨细胞,上调CathepsinK、CAⅡ、integrinβ3等基因mRNA的表达。结论RAW264.7具有破骨细胞特征性基因表达谱,是一种较好的破骨前体细胞模型。RANKL可诱导RAW264.7细胞形成成熟破骨细胞。  相似文献   

4.
目的研究复合振动对核因子-κB受体活化因子配体(RANKL)诱导的RAW264.7细胞分化的影响,探讨复合振动对破骨细胞分化的影响及机制。方法 RAW264.7细胞RANKL诱导培养3或4d并施加复合振动干预,通过抗酒石酸酸性磷酸酶(TRAP)染色观察TRAP阳性多核细胞形成的变化,real-time RT-PCR分析破骨细胞特异性基因组织蛋白酶K(cathepsin K),金属蛋白酶-9(MMP-9)和TRAP表达的变化。结果复合振动能抑制RANKL诱导破骨细胞形成,下调破骨细胞特异基因cathepsin K,MMP-9和TRAP的表达。结论 RANKL促进RAW264.7细胞向破骨细胞分化,并增加特异基因的表达,但RANKL的促进作用受复合振动抑制。这进一步的阐释复合振动抗骨质疏松的作用机制。  相似文献   

5.
目的探讨低分子量褐藻糖胶(LMWF)对小鼠单核细胞RAW264.7诱导成熟破骨细胞凋亡的影响。方法通过100ng/m L RANKL诱导RAW264.7细胞株分化为破骨细胞,经TRAP特异性染色和骨吸收陷窝对诱导后的细胞进行鉴定。鉴定成功后,用100 ng/m L RANKL诱导RAW264.7细胞株5 d后,使用含有LMWF的培养基继续培养3 d,通过对TRAP阳性细胞计数和分析骨吸收面积来观察低分子量褐藻糖胶对破骨细胞的抑制和骨吸收功能情况;采用流式细胞术检测LMWF对破骨细胞凋亡的影响,capsase-3活性测试试剂盒检测LMWF对capsase-3活性进行测定;RT-PCR检测LMWF对成熟破骨细胞BAX与BCL-2基因表达的影响。结果单纯采用100 ng/m L的RANKL可成功诱导成熟的、有功能的破骨细胞。LMWF可以明显抑制RANKL诱导成熟破骨细胞的形成以及成熟破骨细胞的骨吸收功能;流式细胞术显示LMWF可增加成熟破骨细胞的早期凋亡率;并且能升高capsase-3的活性;PCR显示LMWF可明显下调破骨细胞凋亡相关的BCL-2和上调BAX基因mRNA表达,降低BCL-2/BAX的比值。结论低分子量褐藻糖胶可抑制破骨细胞的活性与骨吸收能力,促进破骨细胞凋亡,其主要机制是通过下调BCL-2和上调BAX mRNA基因表达实现的。  相似文献   

6.
目的探讨研究白介素-6(Interleukin-6,IL-6)对核因子NF-κB受体活化因子配体(Receptor activator of nuclear kappa B ligand,RANKL)及对破骨前体细胞的成熟分化和溶骨效应。方法破骨前体细胞RAW264.7细胞经50ng/mL RANKL诱导1 d后将其分为:1、空白对照组(RANKL+PBS)2、低浓度IL-6组(RANKL+50ng/mL IL-6)3、中浓度IL-6组(RANKL+100ng/mL IL-6)4、高浓度IL-6组(RANKL+150ng/mL IL-6)。连续培养9 d后,进行HE染色检测成熟破骨细胞生成量;通过抗酒石酸酸性磷酸酶(Tartrate resistant acid phosphatase, TRAP)染色法观察TRAP阳性多核细胞的情况;运用扫描电镜检测破骨细胞在骨片上的骨吸收陷窝形成情况。结果 HE染色中,成熟破骨细胞生成量中、高浓度IL-6组明显少于低浓度IL-6组(P0.05),低浓度IL-6组和空白对照组间无明显差别(P0.05)。②通过TRAP染色后,经染色阳性区域面积与视野面积的百分比计算,中、高浓度IL-6组与明显少于低浓度和空白对照组(P0.05)。③扫描电镜观察发现骨吸收陷窝面积与视野面积的百分比随着IL-6浓度的增高,相比空白对照组有显著减少,且高浓度IL-6组中陷窝形成最少(P0.05)。结论 IL-6能直接作用于经RANKL诱导的RAW264.7细胞,能明显抑制破骨细胞激活分化,并降低破骨细胞所致的骨吸收效应。当IL-6浓度超过50ng/mL时,其抑制破骨细胞的骨吸收效应更加明显。  相似文献   

7.
不同浓度金属磨损颗粒对破骨细胞体外分化的影响   总被引:2,自引:0,他引:2  
[目的]观察不同浓度金属磨损颗粒对RAW 264.7在体外分化成破骨细胞的影响,明确浓度与破骨细胞分化数量的关系.[方法]真空球磨法制备人工关节磨损颗粒:RANKL诱导RAW 264.7体外分化成破骨细胞,通过TRAP染色,电镜扫描检测骨片吸收陷窝来鉴定破骨细胞;不同浓度人工关节磨损颗粒混悬液作用RAW 264.7,并用RANKL诱导后第7 d,TRAP染色后,光镜下计数破骨细胞数量.[结果]不同浓度磨损颗粒作用于RAW 264.7 7 d后,显微镜下计数破骨细胞数量,结果显示随着磨损颗粒混悬液浓度增加,RANKL诱导生成的破骨细胞增多,低、中、高浓度3组破骨细胞数均显著高于空白对照组(P<0.05),中、高浓度组破骨细胞数均显著高于低浓组(P<0.05),高浓度组破骨细胞数亦显著高于中浓组(P<0.05).[结论](1)RAW 264.7是一种较好的破骨前体细胞模型,RAW 264.7诱导形成破骨细胞的方法简便易行,所获得破骨细胞均一性好;(2)人工关节金属磨损颗粒为RAW264.7细胞向具有骨质吸收功能的破骨细胞转化发挥正向作用,而且与混悬液的浓度有量效关系.  相似文献   

8.
目的比较α-MEM和高糖DMEM两种培养基对小鼠破骨细胞前体细胞系RAW264.7细胞分化的影响。方法 (1)根据培养基和是否添加核因子κB受体激活蛋白配体(receptor activator for nuclear factor-κB ligand,RANKL)将细胞分为4组:α-MEM培养基组、添加RANKL的α-MEM培养基组、高糖DMEM培养基组、添加RANKL的高糖DMEM培养基组;(2)于培养第3天收集细胞,分别通过q PCR、免疫印迹实验观察分化相关标记物抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRAP)、活化的T细胞核因子(nuclear factor of activated T-cells 1,NFATc1)、核因子κB受体活化因子(receptor activator for nuclear factor-κB,RANK)和组织蛋白酶(Cathepsin)K的mRNA及蛋白表达水平,并做TRAP染色观察各组成熟破骨细胞的形成情况,探讨添加RANKL后α-MEM培养基和高糖DMEM培养基对RAW264.7细胞向破骨细胞分化的影响。结果 (1)与添加RANKL的高糖DMEM培养基相比,添加RANKL的α-MEM培养基使RAW264.7细胞的分化相关标记物TRAP、NFATc1、RANK及cathepsin K的mRNA表达水平增加,TRAP、NFATc1及cathepsin K的蛋白表达水平增加;(2)在α-MEM培养基或高糖DMEM培养基中添加RANKL均可使RAW264.7细胞分化为成熟破骨细胞,但添加RANKL的α-MEM培养基处理的细胞组中形成的成熟破骨细胞更多。结论添加RANKL的α-MEM培养基有利于RAW264.7细胞向破骨细胞分化。  相似文献   

9.
《中国矫形外科杂志》2015,(23):2180-2185
[目的]探讨槲皮苷对核因子κB受体激动剂配体(receptor activator of nuclear factor kappa B ligand,RANKL)诱导的破骨细胞形成及骨吸收功能的影响。[方法]通过CCK-8法观察不同浓度槲皮苷(0~800μmol/L)干预不同时间(48 h、96 h)对RAW 264.7细胞的生存影响,确定合适的体外用药浓度;利用体外RANKL诱导RAW 264.7细胞形成破骨细胞体系,通过抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRAP)染色计数评价槲皮苷(200、400μmol/L)对破骨细胞形成和生存的影响;通过骨片吸收实验对骨凹陷和骨吸收面积统计分析评价槲皮苷(200、400μmol/L)3 d内对成熟破骨细胞骨吸收功能的影响;釆用实时定量(Real-Time)PCR技术,检测槲皮苷(200、400μmol/L)对RANKL诱导的破骨细胞特异性基因NFATc1、TRAP和c-fos表达水平的影响。[结果]细胞生存实验发现槲皮苷干预96 h后,槲皮苷(0~800μmol/L)对RAW 264.7细胞4 d内生存未发现显著影响;通过TRAP染色发现200、400μmol/L槲皮苷能显著抑制体外RANKL诱导的破骨细胞形成;通过骨片吸收实验发现200、400μmol/L槲皮苷3d内能显著降低骨吸收面积,提示其抑制成熟破骨细胞骨吸收功能;同时,槲皮苷能呈剂量依赖性抑制RANKL诱导活化T细胞核因子(nuclear factor of activated T cells,NFAT)c1、TRAP和c-fos基因表达。[结论]槲皮苷通过抑制NFATc1,TRAP和c-fos的表达,来抑制体外RANKL诱导的破骨细胞形成和骨吸收功能,是一种潜在治疗骨质疏松药物。  相似文献   

10.
【摘要】 目的 观察高糖及TNF-α的培养条件对RAW264.7细胞向破骨细胞诱导分化的影响。方法 在正常、高糖(30 mmol/L)及TNF-α(10 μmol/L)条件下培养RAW264.7细胞后,加入浓度为100 ng/mL的细胞核转录因子κB受体激活物的配体(receptor activator of NF-κB ligand, RANKL)为诱导剂,诱导RAW264.7向破骨细胞分化;诱导9天后,抗酒石酸酸性磷酸酶(TRAP)染色,比较各组TRAP+细胞数,RT-PCR及Western Blot检测各组破骨细胞标志基因CTR和MMP-9的表达。结果 不同的培养条件下RANKL均能诱导RAW264.7分化为成熟的破骨细胞,其中TNF-α环境中RAW264.7形成的TRAP+阳性细胞数、CTR和MMP-9的表达最高,而在高糖环境下最低。结论 TNF-α可以促进RAW264.7向破骨细胞分化,而高糖对这个过程可能是抑制作用,这一现象符合Ⅰ型和Ⅱ糖尿病患者骨质破坏的表现;高糖及TNF-α的培养条件下RANKL对RAW264.7的作用可模拟糖尿病足病变微环境中OC的诱导分化的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号