首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
Pure BiFeO3 (BFO), Ce and Ti individual doping and co-doping BiFeO3 thin films were fabricated via sol–gel process on Pt/Ti/SiO2/Si substrates. The microstructure, surface morphology, ferroelectric and dielectric properties of BFO and doped thin films were investigated in detail. X-ray diffraction reveal that all thin films are confirmed the formation of the distorted rhombohedral perovskite structure. No impure phase is identified in all the films. The Ce and Ti co-doping BiFeO3 (BCFTO) thin films exhibited the enhanced ferroelectricity with a large remnant polarization (2P r) of 130 μC/cm2, and low leakage current density of 9.10 × 10?6 A/cm2 which is more than two orders of magnitude lower than that of pure BFO films at 100 kV/cm. The dielectric constant (364 at 1 kHz) of the BCFTO thin films is much larger than that of pure BFO thin films. These results suggest that the introductions of Ce and Ti provides an effective route for improving the ferroelectric, dielectric and leakage properties of BFO thin films.  相似文献   

2.
The leakage behavior and dielectric property of BST80/MgO heterostructured thin films deposited on LaNiO3 (LNO)/Si substrates by sol-gel were investigated. The dielectric constant and the leakage current are modified by MgO insertion. The dramatic reduction in the leakage current effectively increased the charge retention of the capacitors consisted of heterostructured thin films as compared to the pure BST films. The significant reduction in the leakage current can be attributed to the minute solid solubility of MgO in the BST lattice and the potential barrier built in the interface between BST and MgO layers in the heterostructured thin films.  相似文献   

3.
Core‐shell structured barium titanate‐poly(glycidyl methacrylate) (BaTiO3‐PGMA) nanocomposites were prepared by surface‐initiated atom transfer radical polymerization of GMA from the surface of BaTiO3 nanoparticles. Fourier transform infrared spectroscopy confirmed the grafting of the PGMA shell on the surface of the BaTiO3 nanoparticles cores. Transmission Electron Microscopy results revealed that BaTiO3 nanoparticles are covered by thin brushes (~20 nm) of PGMA forming a core‐shell structure and thermogravimetric analysis results showed that the grafted BaTiO3‐PGMA nanoparticles consist of ~13.7% PGMA by weight. Upon incorporating these grafted nanoparticles into 20 μm‐thick films, the resultant BaTiO3‐PGMA nanocomposites have shown an improved dielectric constant (ε = 54), a high breakdown field strength (~3 MV/cm) and high‐energy storage density ~21.51 J/cm3. AC conductivity measurements were in good agreement with Jonscher's universal power law and low leakage current behavior was observed before the electrical breakdown field of the films. Improved dielectric and electrical properties of core‐shell structured BaTiO3‐PGMA nanocomposite were attributed to good nanoparticle dispersion and enhanced interfacial polarization. Furthermore, only the surface grafted BaTiO3 yielded homogenous films that were mechanically stable. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 719–728  相似文献   

4.
Using the radio frequency magnetron sputtering, CaCu3Ti4O12 (CCTO) thin films were deposited on platinized silicon substrates. The influence of annealing temperature on structures and morphologies of the thin films was investigated. The high annealing temperature increased the crystallinity of the films. Temperature dependence of the dielectric constant revealed an amazing different characteristic of the dielectric relaxation at ∼10 MHz, whose characteristic frequency abnormally increased with the decrease of the measuring temperature unlike the relaxations due to extrinsic origins. Meanwhile, the dielectric constant at high frequencies was close to the value derived from the first principle calculation. All these gave the evidences to ascribe this relaxation to the intrinsic mechanism.  相似文献   

5.
《Solid State Sciences》2012,14(3):330-334
The frequency dependence of electric modulus of polycrystalline CaCu3Ti4O12 (CCTO) ceramics has been investigated. The experimental data have also been analyzed in the complex plane of impedance and electric modulus, and a suitable equivalent circuit has been proposed to explain the dielectric response. Four dielectric responses are first distinguished in the impedance and modulus spectroscopies. The results are well interpreted in terms of a triple insulating barrier capacitor model. Using this model, these four dielectric relaxations are attributed to the domain, domain-boundary, grain-boundary, and surface layer effects with three Maxwell–Wagner relaxations. Moreover, the values of the resistance and capacitance of bulk CCTO phase, domain-boundary, grain-boundary and surface layer contributions have been calculated directly from the peak characteristics of spectroscopic plots.  相似文献   

6.
Bi1.5MgNb1.5O7 (BMN) thin films were fabricated on Au/Ti/SiO2/Si(100) substrates using a sol?Cgel spin coating process. Thermo decomposition of the BMN precursor gel was discussed. The structures, morphologies, dielectric properties and voltage tunable dielectric properties were investigated. The deposited films showed a cubic pyrochlore structure after annealing at 550?°C or higher temperatures. With the annealing temperature increased from 500 to 800?°C, the root-mean-square surface roughness of the films increased from 0.6 to 6.8?nm. Additional phase, MgNb2O6, emerged after annealing at 800?°C due to the volatilization of Bi element. The dielectric properties and tunability of the films were annealing temperature dependent. BMN thin films annealed at 750?°C had a high dielectric constant of 135 and low dielectric loss of 0.002 at 1?MHz. The high tunability of 31.3?% and figure of merit of 156.5 were obtained under an applied electric field of 1?MV/cm at room temperature.  相似文献   

7.
The Ba0.6Sr0.4TiO3 (BST60) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel method. The thickness of CeO2, serving as a buffer layer, was varied from 0 to 75 nm, in order to optimize the dielectric tunable property. X-ray patterns analysis indicates that all the thin films exhibit good crystalline quality with a pure perovskite phase and insertion of the CeO2 buffer layer does not change the crystal structure of BST60. Dielectric properties of the thin films were investigated as a function of both temperature and direct current electric field. The results show that dielectric constant and loss are modified by insertion of the CeO2 buffer layer. The BST60 thin films with 25 nm thickness CeO2 buffer layer have the highest figure of merit, low dielectric loss, and suitable dielectric constant, which render them attractive for the tunable microwave device applications.  相似文献   

8.
CaCu3Ru4O12 (CCRO) is a conductive oxide having the same structure as CaCu3Ti4O12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.  相似文献   

9.
(K0.5Na0.5)NbO3 (KNN) is a promising lead-free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non-stoichiometry. This paper compares three acetate-based chemical solution synthesis and deposition methods for 0.5 mol % Mn-doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two-step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed.  相似文献   

10.
High dielectric constant is highly desirable in capacitors and memory devices. In this work, oleic acid (OA)‐capped BaTiO3 nanocrystals were synthesized by a two‐phase approach. Polyimide (PI)/BaTiO3‐nanocrystal composite thin films with high dielectric constant have been successfully fabricated. The morphologies and dielectric properties of the hybrid films were exploited. The results showed that BaTiO3 nanocrystals can be uniformly dispersed in the PI thin films owing to the surface modification of OA‐capped BaTiO3 nanocrystals. It was found that the dielectric constant of composite film varies with the volume fraction of BaTiO3 nanocrystals and sintering temperatures and reaches a maximum value of 44.1, which is around 13 times higher than that of pristine PI thin film (3.2). These results demonstrated that PI/BaTiO3‐nanocrystal composite films have considerable application potential in microelectronic fields.  相似文献   

11.
The temperature dependence of the electron spin resonance (ESR) spectrum of copper in CaCu3Ti4O12 (CCTO) polycrystalline samples doped with transition metal elements Mn, Fe, Ni is reported. The frequency dependence of the dielectric constant of the sample is also reported at room temperature. While the dielectric constant of undoped CCTO samples reaches ~10,000, it is found one hundred times lower in samples doped with only 0.5 or 1% of Mn or Fe. Copper is confirmed to give a g = 2.14 signal at room temperature for substituted and unsubstituted samples. Below the antiferromagnetic transition that occurs near 25 K, the signal is found shifted down to low fields for all samples. However the downshift is 10–20 times more important in Mn and Fe-doped samples compared to undoped or Ni-doped CCTO. ESR results in an undoped CCTO thin film grown by pulse laser deposition are also reported. While in the low-temperature antiferromagnetic phase the spectrum is multi-line and magnetic-field-orientation-dependent, it reduces to a narrow single line, independent of the orientation of the magnetic field, in the upper paramagnetic phase, similar to the undoped polycrystalline sample. All doped samples display much broader response in the upper phase. The results are discussed within the framework of the relationship between the high effective dielectric constant and the electrical conductivity of CCTO bulk.  相似文献   

12.
Investigations focusing on electrical energy storage capacitors especially the dielectric ceramic capacitors for high energy storage density are attracting more and more attention in the recent years. Ceramic capacitors possess a faster charge-discharge rate and improved mechanical and thermal properties compared with other energy storage devices such as batteries. The challenge is to obtain ceramic capacitors with outstanding mechanical, thermal and storage properties over large temperature and frequencies ranges. ABO3 as a type of perovskites showed a strong piezoelectric, dielectric, pyroelectric, and electro-optic properties useful as energy storage and environmental devices. CaCu3Ti4O12 (CCTO) perovskite with cubic lattice (Im3 symmetry) was discovered to have a colossal dielectric constant (104) that is stable over a wide range of frequencies (10 Hz–1 MHz) and temperature independence (100–300 K). The origin of this high dielectric constant is not fully established, specially because it is the same for single crystal and thin films. In this review, the history of CCTO will be introduced. The synthesis and the sintering approaches, the dopant elements used as well as the applications of CCTO will be reported. In addition to dielectrical properties useful to energy storage devices; CCTO could serve as photocatalytic materials with a very good performance in visible light.  相似文献   

13.
A TiO2 thin buffer layer was introduced between the (Pb0.4Sr0.6)TiO3 (PST) film and the Pt/Ti/SiO2/Si substrate in an attempt to improve their electrical properties. Both TiO2 and PST layers were prepared by a chemical solution deposition method. It was found that the TiO2 buffer layer increased the (100)/(001) preferred orientation of PST and decreased the surface roughness of the films, leading to an enhancement in electrical properties including an increase in dielectric constant and in its tunability by DC voltage, as well as a decrease in dielectric loss and leakage current density. At an optimized thickness of the TiO2 buffer layer deposited using 0.02 mol/l TiO2 sol, the 330-nm-thick PST films had a dielectric constant, loss and tunability of 1126, 0.044 and 60.7% at 10 kHz, respectively, while the leakage current density was 1.95 × 10−6 A/cm2 at 100 kV/cm.  相似文献   

14.
Compositionally graded Ba1−x Sr x TiO3 (BST) (0 ≤ x ≤ 0.4) thin films were fabricated on Pt/Ti/SiO2/Si and YSZ/Pt/Ti/SiO2/Si substrates by a modified sol–gel technique. The YSZ buffer layer was prepared by RF magnetron sputtering. The microstructure of the graded BST films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results showed that all the films have uniform and crack-free surface with a perovskite structure. The graded BST film with an YSZ buffer layer has larger dielectric constant and lower dielectric loss. The leakage current density of the graded BST film with an YSZ buffer layer lowers two orders than the film without buffer layer. The improved electric properties of the graded films with an YSZ buffer layer was attributed to the YSZ buffer layer act as an excellent seeding layer to enhance the graded BST film growth.  相似文献   

15.
Effects of rare earth Dy and transition metal (TM = Cu, Co and Mn) ions co-doping on the structural, electrical and ferroelectric properties of the BiFeO3 thin films prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method were investigated. All thin films formed as randomly oriented polycrystalline, with no detectable impurity or secondary phases. Among the thin films, the (Bi0.9Dy0.1)(Fe0.975Mn0.025)O3 thin film exhibited well saturated hysteresis loops with remnant polarization (2P r ) of 51 μC/cm2 and low coercive electric field (2E c ) of 685 at 935 kV/cm and low leakage current density of 1.4 × 10?5 A/cm2 at 100 kV/cm. The enhanced properties observed in the co-doped thin films could be considered as being the results of the suppression of ionic defects and of the modified microstructure.  相似文献   

16.
An organic/inorganic nanocomposite film was synthesized using poly(4‐vinylphenol) (PVPh) as an organic insulating polymer and PbO nanoparticles as a high‐k inorganic material to serve as an organic insulator with enhanced dielectric properties. PbO nanoparticles were dispersed into propylene glycol monomethyl ether acetate, and a solution of PbO/PVPh nanocomposite was prepared by adding a crosslinker. The PbO nanoparticle content within the PVPh polymer matrix was varied, and the effects of this variation upon the properties of the resulting nanocomposite films were studied, including the properties of surface morphology, surface bonding state and dielectric characteristic. The dielectric constant increased with increasing PbO content, reaching 9.2 at 1 MHz and with dielectric loss below 0.09 for the PbO content of 6 vol%. Furthermore, the leakage current increased to only 1.3 × 10?8 A cm?1 at the highest nanoparticle loadings, compared to the 7.2 × 10?9 of pristine PVPh. The addition of PbO nanoparticles was found to effectively suppress the absorption of moisture on the surface of PbO/PVPh nanocomposite, although it also increased surface roughness, owing to the agglomeration and particulation of PVPh arising from an anchoring effect of the PbO nanoparticles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A mono‐lancunary keggin‐type decatungstosilicate (SiW11) polyoxometalate (POM) modified by γ‐aminopropyltriethoxysilane (KH550) was incorporated into polyimide (PI) through copolymerization. Nuclear magnetic resonance (NMR), fourier transition infrared spectroscopy (FTIR), and wide angle X‐ray diffraction (WAXD) were used to characterize the structure and composition of the polyoxometalate–organosilane hybrid (SiW11KH550) and PI/SiW11KH550 copolymers. The differential scanning calorimetry (DSC) studies indicate that the glass transition temperature (Tg) of PI/SiW11KH550 copolymers increases from 330°C (for neat PI) to 409°C (for the copolymer sample with 10 wt% of SiW11KH550). Dielectric measurement showed that both the dielectric constant and the dielectric loss for the copolymer thin films decreased with the increase in SiW11KH550 content, and the dielectric constant and dielectric loss values decreased to 2.1 and 3.54 × 10?3, respectively, for the copolymer sample with 10 wt% of SiW11KH550. The incorporation of SiW11KH550 into polymer matrices is a promising approach to prepare PI films with a low dielectric constant and low dielectric loss. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Lead free Ba0.98Ca0.02Ti0.96Sn0.04O3 (BCST) thin films with (110), (111) and (001) orientations were processed via chemical solution deposition, and effects of orientation on the dielectric and piezoelectric properties were investigated in some aspects. The (110) orientated BCST thin films exhibit highest Curie temperature (T c of 85 °C) and lowest dielectric loss (tan δ of 0.02). While, the (111) orientated BCST thin films exhibit highest dielectric tunability (74 %) and largest piezoelectric coefficient (d 33 of 78 pm/V), which indicate that it is a promising lead-free replacement for lead-based applications. The anisotropic dielectric and piezoelectric properties in the three kinds of oriented BCST films has been attributed to the difference of structure, in-plane stress and polarization rotation in orientation engineered BCST films. This work clearly reveals the dielectric and piezoelectric properties of BCST films exhibit a strong sensitivity to orientation.  相似文献   

19.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

20.
The vanadium dioxide (VO2) thin films were deposited on silicon (100) substrate using the pulsed laser deposition technique. The thin films were deposited at different substrate temperatures (500°C, 600°C, 700°C, and 800°C) while keeping all the other parameters constant. X‐ray diffraction confirmed the crystalline VO2 (B) and VO2 (M) phase formation at different substrate temperatures. X‐ray photoelectron spectroscopy analysis showed the presence of V4+ and V5+ charge states in all the deposited thin films which confirms that the deposited films mainly consist of VO2 and V2O5. An increase in the VO2/V2O5 ratio has been observed in the films deposited at higher substrate temperatures (700°C and 800°C). Scanning electron microscope micrographs revealed different surface morphologies of the thin films deposited at different substrate temperatures. The electrical properties showed the sharp semiconductor to metal transition behavior with approximately 2 orders of magnitude for the VO2 thin film deposited at 800°C. The transition temperature for heating and cooling cycles as low as 46.2°C and 42°C, respectively, has been observed which is related to the smaller difference in the interplanar spacing between the as‐deposited thin film and the standard rutile VO2 as well as to the lattice strain of approximately −1.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号