首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new insight into the delay‐dependent stability for time‐delay systems. Because of the key observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices in the Lyapunov–Krasovskii functional to be positive definite, an improved delay‐dependent asymptotic stability condition is presented in terms of a set of LMIs. This fact has been overlooked in the development of previous stability results. The importance of the present method is that a vast number of existing delay‐dependent results on analysis and synthesis of time‐delay systems derived by the Lyapunov–Krasovskii stability theorem can be improved by using this observation without introducing additional variables. The reduction of conservatism of the proposed result is both theoretically and numerically demonstrated. It is believed that the proposed method provides a new direction to improve delay‐dependent results on time‐delay systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The problem of the stability of a linear system with an interval time‐varying delay is investigated. A new Lyapunov–Krasovskii functional that fully uses information about the lower bound of the time‐varying delay is constructed to derive new stability criteria. It is proved that the proposed Lyapunov–Krasovskii functional can lead to less conservative results than some existing ones. Based on the proposed Lyapunov–Krasovskii functional, two stability conditions are developed using two different methods to estimate Lyapunov–Krasovskii functional's derivative. Two numerical examples are given to illustrate that the two stability conditions are complementary and yield a larger maximum upper bound of the time‐varying delay than some existing results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the problem of designing robust guaranteed cost control law for a class of uncertain neutral system with a given quadratic cost function is considered. Based on Lyapunov–Krasovskii functional theory, a delay‐dependent criterion for the existence of guaranteed cost controller is expressed in the form of two linear matrix inequalities (LMIs), which can be solved by using effective LMI toolbox. Moreover, a convex optimization problem satisfying some LMI constraints is formulated to solve a guaranteed cost controller which achieves the minimization of the closed‐loop guaranteed cost. An efficient approach is proposed to design the guaranteed cost control for uncertain neutral systems. Computer software Matlab can be used to solve all the proposed results. Finally, a numerical example is illustrated to show the usefulness of our obtained design method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This study is concerned with the problem of robust delay‐probability‐distribution‐dependent stability of uncertain stochastic genetic regulatory networks with mixed time‐varying delays. The parameter uncertainties are modeled as having a structured linear fractional form. Besides, we consider that the derivatives of the discrete time delays have different upper bounds in various delay intervals. Moreover, less conservative conditions are obtained by choosing an augmented novel Lyapunov–Krasovskii functional and using the lower bound lemma together with the Jensen inequality lemma. Furthermore, the criteria can be applicable to both fast and slow time‐varying delays. Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper deals with the problem of obtaining delay‐dependent stability conditions and L2‐gain analysis for a class of nonlinear time‐delay systems with norm‐bounded and possibly time‐varying uncertainties. No restrictions on the derivative of the time‐varying delay are imposed, though lower and upper bounds of the delay interval are assumed to be known. A Lyapunov–Krasovskii functional approach is proposed to derive novel delay‐dependent stability conditions which are expressed in terms of linear matrix inequalities (LMIs). To reduce conservatism, the work exploits the idea of splitting the delay interval in multiple regions, so that specific conditions can be imposed to a unique functional in the different regions. This improves the computed bounds for certain delay‐dependent integral terms, providing less conservative LMI conditions. Examples are provided to demonstrate the reduced conservatism with respect to the available results in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with delay‐dependent stability for linear systems with time‐varying delays. By decomposing the delay interval into multiple equidistant subintervals, on which different Lyapunov functionals are chosen, and new Lyapunov‐Krasvskii functionals are then constructed. Employing these new Lyapunov‐Krasvskii functionals, some new delay‐dependent stability criteria are established. The numerical examples show that the obtained results are less conservative than some existing ones in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
This paper suggests a generalized zero equality lemma for summations, which leads to making a new Lyapunov–Krasovskii functional with more state terms in the summands and thus applying various zero equalities for deriving stability criteria of discrete‐time systems with interval time‐varying delays. Also, using a discrete‐time counter part of Wirtinger‐based integral inequality, Jensen inequality, and a lower bound lemma for reciprocal convexity, the forward difference of the Lyapunov–Krasovskii functional is bounded by the combinations of various state terms including not only summation terms but also their interval‐normalized versions, which contributes to making the criteria less conservative. Numerical examples show the improved performance of the criteria in terms of maximum delay bounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the problem of stability of time‐delay systems. A new type of augmented Lyapunov functional is proposed. By introducing some free‐weighting matrices and using the parameterized model transformation method, a new delay‐dependent stability condition is obtained in terms of a linear matrix inequality (LMI). Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
This paper is concerned with the problem of delay‐range‐dependent robust H filtering for systems with time‐varying delays in a range. The aim of this problem is to design a filter such that, for all admissible uncertainties, the filtering error system is robustly asymptotically stable with a prescribed H level. The desired filter can be constructed by solving a set of linear matrix inequalities (LMIs). An illustrative numerical example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
This paper discusses the problem of output feedback stabilization for a more general class of stochastic high‐order nonlinear systems with time‐varying delays. On the basis of a subtle homogeneous observer and controller construction, and the homogeneous domination approach, the closed‐loop system is globally asymptotically stable in probability, by choosing an appropriate Lyapunov–Krasovskii functional. An example is given to illustrate the effectiveness of the proposed design procedure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper deals with delay‐dependent H control for discrete‐time systems with time‐varying delay. A new finite sum inequality is first established to derive a delay‐dependent condition, under which the resulting closed‐loop system via a state feedback is asymptotically stable with a prescribed H noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a new method is proposed for stability analysis and synthesis of Takagi–Sugeno (T–S) fuzzy systems with time‐varying delay. Based on a new Lyapunov–Krasovskii functional (LKF), some less conservative delay‐dependent stability criteria are established. In the derivation process, some additional useful terms, ignored in previous methods, are considered and new free‐weighting matrices are introduced to estimate the upper bound of the derivative of LKF for T–S fuzzy systems with time‐varying delay. The proposed stability criterion and stabilization condition are represented in terms of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper deals with the local consensus of multiagent systems with nonlinear dynamics communication delays simultaneously. By introducing a weighted average state and applying the properties of the Laplacian matrix eigenvalues, the system is decoupled into several subsystems, firstly, to reduce complexity of theory analysis. Then, a new augmented vector containing single and double integral terms is constructed and the corresponding Lyapunov functional with triple integral terms is introduced. Meanwhile, in order to improve the estimating accuracy of the derivatives of constructed Lyapunov functional, single integral inequalities and double integral inequalities via auxiliary functions, an extended relaxed integral inequality and an reciprocally convex approach are used, as a result, stability criterion with less conservatism is derived, which guarantees the local consensus of the considered systems. Finally, numerical examples are provided to check the improvement of the proposed method over the existing works.  相似文献   

15.
This paper studies the exponential stability problems of discrete‐time and continuous‐time impulsive positive switched systems with mixed (discrete and distributed) time‐varying delays, respectively. By constructing novel copositive Lyapunov‐Krasovskii functionals and using the average dwell time technique, delay‐dependent sufficient conditions for the solvability of considered problems are given in terms of fairly simple linear matrix inequalities. Compared with the most existing results, by introducing an extra real vector, restrictive conditions on derivative of the time‐varying delays (less than 1) are relaxed, thus the obtained improved stability criteria can deal with a wider class of continuous‐time positive switched systems with time‐varying delays. Finally, two simple examples are provided to verify the validity of theoretical results.  相似文献   

16.
In this paper, an augmented Lyapunov functional is proposed to investigate the asymptotic stability of neutral systems. Two methods with or without decoupling the Lyapunov matrices and system matrices are developed and shown to be equivalent to each other. The resulting delay‐dependent stability criteria are less conservative than the existing ones owing to the augmented Lyapunov functional and the introduction of free‐weighting matrices. The delay‐independent criteria are obtained as an easy corollary. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
18.
By employing the information of the probability distribution of the time delay, this paper investigates the problem of robust stability for uncertain systems with time‐varying delay satisfying some probabilistic properties. Different from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delay is random and its probability distribution is known a priori. In terms of the probability distribution of the delay, a new type of system model with stochastic parameter matrices is proposed. Based on the new system model, sufficient conditions for the exponential mean square stability of the original system are derived by using the Lyapunov functional method and the linear matrix inequality (LMI) technique. The derived criteria, which are expressed in terms of a set of LMIs, are delay‐distribution‐dependent, that is, the solvability of the criteria depends on not only the variation range of the delay but also the probability distribution of it. Finally, three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is concerned with the delay‐dependent stability and robust stability for uncertain systems with time‐varying delay. Through constructing an appropriate type of Lyapunov‐Krasovskii functional and proving its positive definiteness, using slack matrices and a convex combination condition, the delay‐dependent stability criteria, which are less conservative, are derived in terms of linear matrix inequalities. Numerical examples are also given to illustrate the improvement on the conservatism of the delay bound over some existing results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
This paper is concerned with the stability analysis problems of discrete‐time systems with time‐varying delays using summation inequalities. In the literature focusing on the Lyapunov‐Krasovskii approach, the Jensen integral/summation inequalities have played important roles to develop less conservative stability criteria and thus have been widely studied. Recently, the Jensen integral inequality was successfully generalized to the Bessel‐Legendre inequalities constructed with arbitrary‐order Legendre polynomials. It was also shown that general inequality contributes to the less conservatism of stability criteria. In the case of discrete‐time systems, however, the Jensen summation inequality are hardly extensible to general ones since there have still not been general discrete orthogonal polynomials applicable to the developments of summation inequalities. Motivated by such observations, this paper proposes novel discrete orthogonal polynomials and then successfully derives general summation inequalities. The resulting summation inequalities are discrete‐time counterparts of the Bessel‐Legendre inequalities but are not based on the discrete Legendre polynomials. By developing hierarchical stability criteria based on the proposed summation inequalities, the effectiveness of the proposed approaches is demonstrated via three numerical examples for the stability analysis of discrete‐time systems with time‐varying delays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号