首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of thyroid hormone modulation on liver injury associated with ischemia-reperfusion (I-R) and cold storage in rats. First, euthyroid and thyroxine (T4)-pretreated rats were exposed in vivo to 20-min global liver ischemia, then 30-min reperfusion. Liver injury was assessed by measuring serum alanine aminotransferase (ALT) levels. Liver concentrations of adenine nucleotides, reduced glutathione (GSH), and oxidized glutathione were evaluated. Second, rats were given the antithyroid drug propylthiouracil (PTU). Livers stored at 0-1 degrees C in Euro-Collins' solution for 20 h were reperfused at 37 degrees C for 15 min. Lactate dehydrogenase (LDH) in the effluent perfusate and bile flow were evaluated during reperfusion. Serum ALT levels increased after ischemia and I-R. ALT increased significantly more in T4-pretreated than in euthyroid rats after ischemia and I-R. Preischemic levels of adenosine triphosphate (ATP) were significantly lower in livers from T4-pretreated than in euthyroid rats (6.22 +/- 0.7 and 11 +/- 0.9 nmol/mg protein, respectively; P < 0.05). After ischemia, liver ATP was similarly reduced in T4-pretreated and euthyroid rats. After reperfusion, ATP partially recovered in euthyroid rats but remained low in T4-pretreated rats (6.7 +/- 1.0 and 1.91 +/- 0.7 nmol/mg protein, respectively; P < 0.05). Preischemic levels of liver GSH decreased to 44% in T4-pretreated rats. After ischemia, GSH decreased similarly in euthyroid and T4-pretreated rats. GSH recovered promptly after reperfusion in euthyroid rats but remained low in T4-pretreated rats (13.9 +/- 3.3 and 3.9 +/- 0.9 nmol/mg protein, respectively; P < 0.02). During reperfusion after cold storage, LDH in effluent perfusate was significantly lower and bile flow higher in livers from PTU-pretreated rats than from euthyroid rats. The histopathological changes observed after I-R and cold storage confirmed the biochemical findings. Our results suggest that T4 administration exacerbates pretransplant liver damage by increasing liver susceptibility to I-R, whereas PTU administration reduces the liver injury associated with cold storage. Implications: We studied the effects of thyroid hormone modulation on liver injury associated with ischemia-reperfusion and cold storage in rats. Thyroxine administration increased susceptibility to ischemia-reperfusion injury, whereas the antithyroid agent propylthiouracil reduced the deleterious effects associated with cold storage.  相似文献   

2.
Warm ischemia is known to induce substantial damage to the liver parenchyma. With respect to clinical liver transplantation, the tolerance of the liver to warm ischemia and the preservation of these organs have not been studied in detail. In isolated reperfused pig livers we proceeded according to the following concept: Livers were subjected to 1 or 3 h of warm ischemia. Subsequently, these organs were preserved by either normothermic perfusion or cold storage (histidine-tryptophan-alpha-ketoglutarate, HTK) for 3 h each. After storage, liver function was assessed in a reperfusion circuit for another 3 h. Parameters under evaluation were bile flow, perfusion flow, oxygen consumption, enzyme release into the perfusate (creatine kinase, glutamic oxaloacetic transaminase (GOT), lactic dehydrogenase, and glutamic pyruvic transaminase), and histomorphology. Damage to the liver was lowest after warm ischemia of 1 h. The results after cold storage were superior to those after normothermic perfusion (GOT: 3.2 +/- 0.3 and 2.6 +/- 0.2 U/g liver; cumulative bile production: 14.7 +/- 2.1 and 9.4 +/- 1 ml, respectively; P < 0.05). In contrast, we found substantial damage at the end of reperfusion in livers undergoing 3 h of warm ischemia under both preservation techniques with severe hepatocellular pyknoses and essentially altered nonparenchymal cells. The results suggest that pig livers undergoing 1 h of warm ischemia and cold storage for 3 h with HTK solution may lead to functioning after transplantation.  相似文献   

3.
OBJECTIVE: The authors' goal was to determine the effects of specific binding and blockade of P- and E-selectins by a soluble P-selectin glycoprotein ligand-1 (PSGL-1) in rat models of hepatic in vivo warm ischemia and ex vivo cold ischemia. The authors also sought to determine the effect of selectin blockade on isograft survival in a syngeneic rat orthotopic liver transplant model. SUMMARY BACKGROUND DATA: Ischemia/reperfusion (I/R) injury is a major factor in poor graft function after liver transplantation, which may profoundly influence early graft function and late changes. It is hypothesized that I/R injury leads to the upregulation of P-selectin, which is then rapidly translocated to endothelial cell surfaces within 5 minutes of reperfusion of the liver, initiating steps leading to tethering of polymorphonuclear neutrophil leukocytes to the vascular intima. Local production by leukocytes of interleukin-1, tumor necrosis factor-alpha, or both induces P-selectin expression on the endothelium and continues the cascade of events, which increases cell adherence and infiltration of the organ. METHODS: To examine directly the effects of selectins in a warm hepatic I/R injury model, 100 microg of PSGL-1 or saline was given through the portal vein at the time of total hepatic inflow occlusion. The effects of PSGL-1 in cold ischemia were assessed using an isolated perfused rat liver after 6 hours of 4 degrees C storage in University of Wisconsin (UW) solution, with or without the instillation of PSGL-1 before the storage. To evaluate the effect of selectin blockade on liver transplant survival, syngeneic orthotopic liver transplants were performed between inbred male Sprague-Dawley rats after 24 hours of cold ischemic storage in UW solution. A separate group of animals received two doses of 100 microg of PSGL-1 through the portal vein before storage and before reperfusion of the transplanted liver. Recipient survival was assessed at 7 days, and the Kaplan-Meier product limit estimate method was used for univariate calculations of time-dependent recipient survival events. RESULTS: In an in vivo warm rat liver ischemia model, perfusion with PSGL-1 afforded considerable protection from I/R injury, as demonstrated by decreased transaminase release, reduced histologic hepatocyte damage, and suppressed neutrophil infiltration, versus controls (p < 0.05). When cold stored livers were reperfused, PSGL-1 reduced the degree of hepatocyte transaminase release, reduced neutrophil infiltration, and decreased histologic hepatocyte damage (p < 0.05 vs. UW-only controls). On reperfusion, livers treated with PSGL-1 demonstrated increased portal vein blood flow and bile production (p < 0.05 vs. UW-only controls). In addition, 90% of the rats receiving liver isografts stored in UW solution supplemented with PSGL-1 survived 7 days versus 50% of those whose transplanted syngeneic livers had been stored in UW alone (p < 0.05). CONCLUSIONS: Selectins play an important role in I/R injury of the liver. Early modulation of the interaction between P-selectin and its ligand decreases hepatocyte injury, neutrophil adhesion, and subsequent migration in both warm and cold rat liver ischemia models. In addition, the use of PSGL-1 before ischemic storage and before transplantation prevents hepatic injury, as documented by a significant increase in liver isograft survival. These findings have important clinical ramifications: early inhibition of alloantigen-independent mechanisms during the I/R damage may influence both short- and long-term survival of liver allografts.  相似文献   

4.
OBJECTIVES: To investigate whether liver ischemia and reperfusion (IR) directly affect functions of remote organs. BACKGROUND: Cardiovascular and respiratory dysfunction follows hemorrhage, spinal shock, or trauma as a result of no-flow-reflow phenomena. Hepatic IR induces remote organ damage probably by xanthine oxidase and oxygen species. MATERIALS AND METHODS: Isolated rat livers, lungs, and hearts were perfused with Krebs-Henseleit solutions. After stabilization, livers were either perfused or made ischemic. Then, livers and hearts or livers and lungs were reperfused in series, and the liver was disconnected and the second organ continued to perfuse with the accumulated effluents. MEASUREMENTS AND MAIN RESULTS: Ischemic and reperfused liver effluent contained high lactate dehydrogenase and uric acid concentrations compared with controls; xanthine oxidase increased 60 to 100 times. Ischemic and reperfused lung peak inspiratory pressure almost doubled; airway static compliance halved; myocardial contractility decreased to 70% of baseline; wet weight-to-dry weight ratios of lungs and livers increased. CONCLUSION: Ischemic and reperfused liver can directly induce myocardial and pulmonary dysfunction, presumably by oxidant-induced injury.  相似文献   

5.
BACKGROUND/AIMS: Vasopressin has been reported to reduce bile flow, but its effects on bile acid secretion and bile acid-related hepatotoxicity are still unclear. We therefore investigated the influence of vasopressin on the hepatotoxicity and biliary excretion of taurochenodeoxycholic acid in primary cultured rat hepatocytes and isolated perfused rat liver models. METHODS/RESULTS: 1) Addition of vasopressin to hepatocyte cultures significantly decreased lactate dehydrogenase release as compared to cultures exposed to 1 mM taurochenodeoxycholic acid alone, and also reduced intracellular taurochenodeoxycholic acid content from 19.3 +/- 2.2 to 13.0 +/- 1.6 nmol/mg protein. After 30 min of preincubation with 1 mM taurochenodeoxycholic acid, rinsing and reculture of hepatocytes in bile acid-free medium resulted in gradual decrease in the intracellular level of the bile acid, and addition of vasopressin (10(-9) M) to the reculture medium accelerated this process. 2) Superimposition of vasopressin (330 pmol/l) for 10 min on taurochenodeoxycholic acid infusion (1.0 mumol/min: 25 mumol/l) caused a rapid increase in bile flow and biliary excretion of taurochenodeoxycholic acid (697 +/- 42 vs 584 +/- 27 nmol/10 min per g liver) from perfused rat livers, and significantly reduced lactate dehydrogenase release. 3) Superimposition of the PKC blocker H-7 (5 mumol/l) on taurochenodeoxycholic acid infusion (1.0 mumol/min: 25 mumol/l) caused a gradual increase in bile flow and biliary excretion of taurochenodeoxycholic acid. Furthermore, an additional infusion of vasopressin (100 pmol/l) for 10 min in the presence of H-7 produced a greater increase in bile flow and biliary excretion of taurochenodeoxycholic acid as compared with H-7 alone (754 +/- 71 vs. 657 +/- 26 nmol/g liver). 4) Continuous infusion of vasopressin (330 pmol/l) significantly increased the late peak (10-50 min) of horseradish peroxidase excretion from perfused livers (from 8.48 +/- 1.02 to 21.7 +/- 6.02 ng/g liver). CONCLUSIONS: These findings suggest that vasopressin exerts a protective effect against taurochenodeoxycholic acid-induced hepatotoxicity by stimulating the secretion of this bile acid via intracellular vesicular transport systems.  相似文献   

6.
BACKGROUND: The organ donor shortage has led to a reconsideration of the use of non-heart-beating donors (NHBDs). However, graft injury due to warm ischemia in NHBD livers strongly affects posttransplant outcome. The present study was aimed at investigating the role of the cellular cyclic (c)AMP second messenger signal with regard to hepatic viability after cold preservation of NHBD livers. METHODS: Cardiac arrest was induced in Wistar rats by frenotomy of the anesthetized nonheparinized animal. After 30 min, the livers were excised and flushed with 20 ml of heparinized saline solution, rinsed with 10 ml of University of Wisconsin (UW) solution, and stored submerged in UW solution at 4 degrees C for 24 hr. In half of the experiments, UW solution was supplemented with glucagon (0.5 microg/ml) to increase the cAMP signal in the liver. Reperfusion was carried out in vitro after all livers were incubated at 25 degrees C in saline solution to replicate the period of slow rewarming during surgical implantation in vivo. RESULTS: Hepatic levels of cAMP (nmol/g dry weight) declined from 1.21+/-0.05 to 0.53+/-0.03 (P<0.01) at 30 min after cardiac arrest. Subsequent storage in UW solution resulted in a further decline to 0.35+/-0.04 after 24 hr in group A, whereas glucagon treatment enhanced cellular cAMP signal to 0.64+/-0.06 (P<0.01). Upon reperfusion, liver integrity was significantly improved after glucagon administration, with 66% reduction in alanine aminotransferase release and a threefold increase in hepatic bile production as compared with untreated livers. Moreover, liver ATP tissue levels were restored to only 2.19+/-0.51 micromol/g in the untreated group but reached 4.97+/-0.41 micromol/g (P<0.05) after treatment with glucagon. CONCLUSIONS: Posthoc conditioning of predamaged livers by glucagon enhances cAMP tissue levels during ischemic preservation and improves hepatic integrity upon reperfusion. This may represent a promising approach for the use of livers from non-heart-beating donors in clinical transplantation.  相似文献   

7.
BACKGROUND/AIMS: The pathogenesis of the inflammatory lesion in primary sclerosing cholangitis is unknown. The clinical picture is characterized by i.a. episodes of fever, the cause of which also remains speculative. Previous studies of bacterial isolates in the liver or bile ducts in primary sclerosing cholangitis have had the shortcoming of possible contamination associated with the sampling. The aim of this study was to investigate whether bile and bile duct tissue, obtained under sterile conditions in connection with liver transplantation, contain bacteria. METHODS: We studied bile from bile duct walls and bile collected from the explanted livers of 36 patients with primary sclerosing cholangitis and 14 patients with primary biliary cirrhosis. RESULTS: Positive cultures were obtained from 21 of 36 primary sclerosing cholangitis patients, but from none of the primary biliary cirrhosis patients. The number of bacterial strains was inversely related to the time after the last endoscopic retrograde cholangiography. Treatment with antibiotics or intraductal stent, or the occurrence of fever before liver transplantation did not seem to influence the culture results, whereas antibiotic treatment in connection with endoscopic retrograde cholangiography may possibly have reduced the number of isolates in the cultures. Alpha-haemolytic Streptococci were retrieved as late as 4 years after the last endoscopic retrograde cholangiography. Retrospective analysis of liver laboratory tests after endoscopic retrograde cholangiography did not indicate a deleterious effect of the investigation. CONCLUSIONS: The data suggest that antibiotics should be given routinely in connection with endoscopic retrograde cholangiography. They also raise the question of a possible role of alpha-haemolytic Streptococci in the progression of primary sclerosing cholangitis.  相似文献   

8.
The Eisai hyperbilirubinemic rat is a mutant strain of Sprague-Dawley origin with hereditary defects in the biliary excretion of bilirubin glucuronide, glutathione, and several other organic anions. The correlation between bile flow and bile acid excretion rates during taurocholate infusion revealed that bile acid-independent flow was smaller in the mutant than in intact Sprague-Dawley rats (19.3 vs 56.0 microliters/kg per min), while bile acid-dependent flow was similar. The correlation between bile flow and glutathione excretion rates in Sprague-Dawley rats with modified hepatic glutathione levels revealed that a certain portion of bile flow was proportional to the biliary excretion of glutathione, with a coefficient of 551 bile per 1 mol glutathione. One-third of bile acid-independent bile flow in intact Sprague-Dawley rats was accounted for by glutathione osmosis, which feature was absent in the mutant rats.  相似文献   

9.
A mini T-tube is introduced for the bile duct anastomosis of rat liver transplantation as well as interval bile collection. The validity of the T-tube was evaluated in 14 liver-transplanted rats and compared to 14 rats using traditional stent for bile duct anastomosis. Changes of biliary tree after the T-tube anastomosis were examined by T-tube cholangiography on sample rats at 4 days and at 4 months after liver grafting. Additionally, bile volumes and rates of bile salt secretion were compared in the continuously flowing cannula and the chronic T-tube fistula in normal rats. The results show that the mini T-tube facilitates bile duct anastomosis and study of bile secretion after liver transplantation in rats without increase in surgical difficulty or interference of biliary enterohepatic circulation.  相似文献   

10.
We studied the influence of intermittent ischemic injury on thioacetamide-induced liver cirrhosis in rats. Wistar rats were divided into group A, intermittent ischemic injury to liver cirrhosis, and group B, continuous ischemic injury to liver cirrhosis. Total ischemic time was 60 min in both groups. In group A, ischemic injury consisted of a repetition 4 times of 15 min ischemia and 5 min reperfusion. The ATP level of the liver was measured before ischemia, before reperfusion, and 60 min after reperfusion. Bile was collected to determine bile flow rate. The ATP level in the liver tissue 60 min after reperfusion was significantly (p < 0.05) higher in group A than in group B. The ATP level immediately before reperfusion was also significantly (p < 0.05) higher in group A than in group B. The survival rate 1 week after ischemic injury and bile flow rate 60 min after reperfusion were significantly (p < 0.01) higher in group A compared with those in group B. The energy level was much higher in intermittent ischemic injury than in continuous ischemic injury immediately before reperfusion and after reperfusion. Survival rate and bile flow rate were higher in intermittent ischemic injury than in continuous ischemic injury. Therefore it suggests that the viability of the liver was maintained better in intermittent ischemic injury than in continuous ischemic injury.  相似文献   

11.
BACKGROUND: Recent observations provide evidence that complement is involved in the pathophysiology of ischemia/reperfusion injury. In this study, we assessed the impact of complement inhibition on hepatic microcirculation and graft function using a rat model of liver transplantation. METHODS: Arterialized orthotopic liver transplantation was performed in Lewis rats after cold preservation (University of Wisconsin solution, 4 degrees C, 24 h). Eight animals received the physiological complement regulator soluble complement receptor type 1 (sCR1) intravenously 1 min before reperfusion. Controls received Ringer's solution (n=8). Microvascular perfusion, leukocyte adhesion, and Kupffer cell phagocytic activity were studied 30-100 min after reperfusion by in vivo microscopy. RESULTS: Microvascular perfusion in hepatic sinusoids was improved in the sCR1 group (87+/-0.7% vs. 50+/-1%; P < 0.001). The number of adherent leukocytes was reduced in sinusoids (68.3+/-4.7 vs. 334.1+/-15.8 [adherent leukocytes per mm < or = liver surface]; P < 0.001) and in postsinusoidal venules after sCR1 treatment (306.6+/-21.8 vs. 931.6+/-55.9 [adherent leukocytes per mm < or = endothelial surface]; P < 0.001). Kupffer cell phagocytic activity was decreased in the sCR1 group compared to controls. Postischemic bile production reflecting hepatocellular function was increased by almost 200% (P = 0.004) after complement inhibition. Plasmatic liver enzyme activity was decreased significantly upon sCR1 treatment, indicating reduced parenchymal cell injury. CONCLUSIONS: Our results provide further evidence that the complement system plays a decisive role in hepatic ischemia/reperfusion injury. We conclude that complement inhibition by sCR1 represents an effective treatment to prevent reperfusion injury in liver transplantation.  相似文献   

12.
Cholestasis is a cardinal complication of liver disease, but most treatments are merely supportive. Here we report that the sulfonylurea glybenclamide potently stimulates bile flow and bicarbonate excretion in the isolated perfused rat liver. Video-microscopic studies of isolated hepatocyte couplets and isolated bile duct segments show that this stimulatory effect occurs at the level of the bile duct epithelium, rather than through hepatocytes. Measurements of cAMP, cytosolic pH, and Ca2+ in isolated bile duct cells suggest that glybenclamide directly activates Na+-K+-2Cl- cotransport, rather than other transporters or conventional second-messenger systems that link to secretory pathways in these cells. Finally, studies in livers from rats with endotoxin- or estrogen-induced cholestasis show that glybenclamide retains its stimulatory effects on bile flow and bicarbonate excretion even under these conditions. These findings suggest that bile duct epithelia may represent an important new therapeutic target for treatment of cholestatic disorders.  相似文献   

13.
BACKGROUND/AIMS: Long-term bile duct ligation in rats is associated with secondary biliary cirrhosis and metabolic alterations, e.g. mitochondrial dysfunction. We performed the current studies to characterize the reversibility of hepatic mitochondrial dysfunction after reversing biliary obstruction by Roux-en-Y anastomosis. METHODS: Rats were studied after 4 weeks of bile duct ligation, and after 5 or 14 days of reanastomosis. Control rats were pair-fed to treated rats and all rats were studied after starvation for 24 h. Mitochondria were isolated by differential centrifugation and enzyme activities determined by spectrophotometric methods. RESULTS: In comparison to controls, plasma beta-hydroxybutyrate concentrations were decreased in bile duct ligated rats (200+/-70 vs. 790+/-200 micromol/l) and remained decreased after relief of biliary obstruction. In contrast, plasma free fatty acids were not different between controls and treated rats. Oxidative metabolism of L-glutamate, succinate and duroquinol was decreased in liver mitochondria from bile duct ligated rats. After relief of biliary obstruction, the metabolism of L-glutamate and duroquinol normalized quickly, whereas succinate metabolism remained impaired. Similar results were obtained for the mitochondrial oxidases in disrupted mitochondria. The activities of complex I, II, III and V of the respiratory chain were reduced in bile duct ligated rats. After relief of biliary obstruction, complex I and III normalized quickly, whereas complex II and V remained impaired. Oxidative metabolism of long-chain fatty acids by isolated liver mitochondria was decreased in bile duct ligated rats and did not recover after relief of biliary obstruction. CONCLUSIONS: Long-term cholestasis in the rat is associated with a decrease in specific functions of liver mitochondria which recover only partially after Roux-en-Y anastomosis. The persistence of decreased mitochondrial fatty acid metabolism cannot be explained by impaired activity of the respiratory chain, but is more likely due to alterations in mitochondrial beta-oxidation.  相似文献   

14.
Prevention of cellular damage after warm ischemia is of major importance in liver transplantation. In this study, we determined the extent to which lipid peroxides contribute to the pathogenesis of hepatic cell damage induced by transient warm ischemia with subsequent reperfusion. In addition, the function and immunohistochemical features of glutathione peroxidase, a potent physiological lipid peroxide scavenger of the liver, was assessed. Reperfusion following 15 or 30 minutes of warm ischemia resulted in a significant elevation in serum and liver lipid peroxidase (LPO) levels. In addition, necrosis of the hepatic periportal area accompanied with remarkable rises in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were observed. In contrast, 30 min of ischemia without reperfusion caused minimal hepatocellular damage. The adverse changes after ischemia/reperfusion were minimized by pretreatment with superoxide dismutase (SOD). These results indicate that increased lipid peroxidation by production of radicals after reperfusion caused the liver cell damage. After ischemia/reperfusion, liver glutathione peroxidase (GSH-PO) activity was significantly decreased and its location altered in the damaged liver. These findings suggest that GSH-PO contributes significantly to the protection against hepatic reperfusion injuries.  相似文献   

15.
Zopolrestat (Alond) is a new drug that is being evaluated as an aldose reductase inhibitor for the treatment of diabetic complications. 14C-labeled zopolrestat was orally administered to rats for a tissue distribution study and a bile duct cannulation metabolism study. Tissue samples from the distribution study were analyzed by complete oxidation and liquid scintillation counting. Urine and bile samples from the bile duct cannulation study were analyzed by microbore HPLC, with simultaneous radioactivity monitoring and atmospheric pressure ionization tandem mass spectrometry. The mass balance in the distribution study demonstrated that the greatest exposure (AUC0-infinity) occurred in the liver, followed by the ileum and large intestine. The time of maximal plasma concentrations for nearly all tissues was 4 hr after the dose, and the half-life of radioactivity in most tissues (8-10 hr) was similar to the half-life in plasma. For the bile duct-cannulated rat study, most of the radioactivity was recovered in the bile, indicating that biliary excretion is a major route of elimination of zopolrestat and its metabolites in rats. Numerous oxidative metabolites, as well as phase II conjugates, were identified in the bile and urine samples. Acyl glucuronides of zopolrestat and unchanged drug accounted for >85% of biliary radioactivity, whereas unchanged drug and degradation products of glutathione conjugates were identified as the major urinary metabolites.  相似文献   

16.
The purpose of this study was to investigate the availability of an orthotopic transplantation of partial hepatic autograft in dogs as a means of surgical training. Male mongrel dogs weighting 10-15 kg were used. The left lobe of the liver was harvested while preserving the left branches of the portal vein, hepatic artery and bile duct, and the left hepatic vein. The remnant liver was removed while preserving the inferior vena cava using a veno-venous bypass. Orthotopic transplantation of the autograft was performed while anastomosing the left hepatic vein to the inferior vena cava, portal and arterial reconstruction, and external biliary drainage. Thirteen out of 29 dogs survived more than 48 h after transplantation. However, 6 out of 13 dogs were sacrificed after developing bile peritonitis due to a dislodgement of the biliary catheter, and only two dogs were able to survive for 7 days after transplantation. The arterial ketone body ratio recovered to 1.0 within 1 h after reperfusion, and the ratio of the dogs that survived for more than 48 h remained above 1.0 until sacrifice. Orthotopic transplantation of a partial hepatic autograft is a useful and simple procedure to train surgeons for partial liver transplantation.  相似文献   

17.
There is a great body of evidence linking a high fat diet with the formation of gallstones. However, the effect of fat per se on obstructive liver damage (not involving gallstone formation) has not been assessed. The aim of this work was to study the effect of a high fat diet on liver damage induced by bile duct ligation in rats. Male 21-day-old Wistar rats were divided into two groups: group 1 received standard Purina chow diet 5001 containing 4.5% fat, group 2 received Purina chow diet 5001 enriched with 33% pork fat. Animals were allowed food and water ad libitum for 5 weeks. Obstructive jaundice was induced by double ligation and division of the common bile duct. The animals were sacrificed 1 week after biliary obstruction. Control animals were sham operated. Serum bilirubins and alkaline phosphatase, gamma-glutamyl transpeptidase and glutamic pyruvic transminase enzyme activities increased by biliary obstruction. Glycogen content decreased in the bile duct-ligated rats. These effects were more important in the group fed a 33% fat diet. Our results show that a high animal fat diet increases liver damage in experimental biliary obstruction in rats. Owing to our experimental design (bile duct ligation), the effect of a high fat diet cannot be attributed to an increase in the formation of gallstones but a direct effect must be considered. The mechanism by which fat augmented liver damage can be associated with an increase of total bile content and its toxicity.  相似文献   

18.
Controversy persists as to whether reperfusion-induced injuries actually occur in the hepatocyte. The liver is the major source of glutathione, a scavenger of hydrogen peroxide. The aim of this study was to evaluate the sensitivity of the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) [GSH:GSSG] as an index of hepatic metabolic stress. A total of 121 rats were studied. The superior mesenteric vein (SMV) was occluded for 30 min, and this was followed by 0, 10, or 120 min of reperfusion. Total glutathione and GSSG levels in the liver, bile, and plasma were quantified, using glutathione reductase-coupled enzymatic assays. Results indicated that the hepatic GSH/GSSG ratio was maintained after an occlusion of the SMV, despite a decrease in adenosine triphosphate (ATP) level and energy charge potential. However, plasma levels of total glutathione and GSSG in the inferior vena cava increased after SMV occlusion and continued to increase after reperfusion. Biliary GSSG efflux decreased during 30-min occlusion of the SMV, and remained low even after reperfusion. The liver maintains homeostasis despite a decrease in biliary GSSG efflux, probably by secreting excess GSSG into the hepatic vein when the SMV is occluded. We conclude that the total amount of glutathione and GSSG in the plasma is directly correlated with oxidative stress in the liver.  相似文献   

19.
BACKGROUND/AIMS: The hepatic transport of bile salts can be regulated by changes in bile salt pool size and/or in the flux of bile salts through the liver. Prolonged bile salt pool depletion is associated with down-regulation of maximum taurocholate transport and decreased canalicular membrane specific bile salt binding sites. This study was undertaken to investigate: a) whether adaptive down-regulation of maximum hepatic bile salt transport occurs to the same extent for bile acids of different hydrophobicity; and b) the role of microtubule-dependent vesicular pathway in the adaptive changes of bile salt transport capacity. METHODS: Male rats were subjected to 24-h or 48-h external biliary diversion to induce bile salt pool depletion. Basal bile flow, bile salt secretion and lipid secretion, maximum secretory rate of three bile salts of different hydrophobicity (tauroursodeoxycholate, taurocholate and taurochenodeoxycholate) and changes in the biliary excretion of two markers of the microtubule-dependent vesicular pathway (horseradish peroxidase and polyethyleneglycol molecular weight-900) were measured in control and bile salt-depleted rats. Taurocholate-stimulated horseradish peroxidase biliary excretion was also assessed in order to define whether the restoration of bile salt flux across the hepatocytes increased the excretion of this marker in bile salt-depleted rats. RESULTS: The reduction in the maximum secretory rate of the three bile salts under study observed after prolonged biliary diversion was clearly related to their hydrophobicity, with greater reduction for taurochenodeoxycholate and smaller reduction for tauroursodeoxycholate, compared with taurocholate. The biliary excretion of vesicular transport markers was significantly reduced in bile salt-depleted rats. However, when stimulated by taurocholate, biliary excretion of horseradish peroxidase was similar to controls. CONCLUSIONS: The magnitude of the decrease of the hepatic bile salt maximum transport capacity seen after bile salt pool depletion is directly related to the hydrophobicity of the bile salt infused. A functionally depressed vesicular transport pathway appears to be also a contributing factor to this phenomenon.  相似文献   

20.
The isolated liver perfusion technique was used to study the effect of therapeutic doses of paracetamol on hepatic gluconeogenesis and bromosulphthalein clearance from the perfusate and biliary excretion of the dye in the rat. Six groups of rats were studied; those in the three experimental groups were given 0.02 g kg-1 paracetamol daily for ninety days. The livers of animals in the control group and in one of the experimental groups were perfused with a medium containing pyruvate. The animals in the second experimental and control group were perfused with a medium containing bromosulphthalein (10 mg/100 mL). The livers of the third experimental and control group were subjected to histological examination. The rate of glucose formation and glucose concentrations were decreased, while, lactate levels and lactate: pyruvate ratios were increased in paracetamol-treated rats. The mean concentration of bromosulphthalein in the perfusate and biliary excretion of the dye were decreased. Macro and micro vesicular fatty change was present in the livers of paracetamol-treated rats. This study demonstrates that chronic administration of therapeutic doses of paracetamol to rats adversely affects liver function, as evidenced by impaired gluconeogenesis and bromosulphthalein clearance from the perfusate, and excretion of the dye into the bile, and provides histological evidence of hepatic damage in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号