首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

2.
By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa.  相似文献   

3.
Based on the oblique mode scheme provided in the Appendix, and analysis is made of the tcleconnectional structures (TNS) of the NH 500-hPa height field in January, resulting in a series of teleconnectional patterns representative of the main features of TNS, of which the teleconnectional pattern WPAA (Western Pacific/Asian/ American) closely related to the East-Asian circulation is presented for the first time in this field of research. Contrast analysis indicates that TNS are so sensitive to the transition of seasons that a slight transition would bring about a considerable response. Hence the examination of the month-to-month TNS of the NH atmospheric circulations is indispensable.  相似文献   

4.
The zonal and meridional circulations and their variability arc examined on the basis of the surface wind data for 1950-1979. The climatological mean zonal wind and its divergence arc examined in reference to the Walker Circulation. The role played by the meridional circulation in contributing to convergence of the surface wind field within the equatorial zone is emphasized. Regression coefficients are used to infer seasonal mean anomalies of divergence of the surface wind in years when the sea level pressure is 1 hPa above normal at Darwin, a condition representative of El Nino events. It is shown that anomalies in the divergence associated with the meridional wind component are primarily responsible for the heavy precipitation in the Central Pacific, while the anomalous divergence associated with the zonal wind component may cause the drought in the Western Pacific near Indonesia. A similar pattern of divergence anomalies is evident during three consecutive seasons beginning in northern summer and end  相似文献   

5.
The characteristics of 200 hPa divergent wind and velocity potential have been analysed for four kinds of tropical cyclone tracks having impact on the SOuth China Sea.It is found that the difference of monsoon circulation in 200 hPa divergence wind field may affect the medium-range movement characteristics of tropical cyclone tracks.Corresponding to the west Pacific subtropical high,the orientation of 200 hPa secondary convergence line and its extension to the west may indicate the variability of track types.The direction of tropical cyclone movement is 2 longitudes west of and parallel to the 200 hPa secondary divergence line.  相似文献   

6.
The dominant spatial patterns of the seasonal 500 hPa GPH field is induced by the EOF analysis. In winter, the first and fourth eigenvector show that the PEA and PNA-like anomalous flow pattern will prevail when the temporal coefficient is negative. Through the variation of the temporal coefficient of the eigenvector, prevailing of these flow patterns is significantly related to the variation of SST in equatorial Pacific. These relationships are insignificant in other three seasons.  相似文献   

7.
With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the prediction abilities of Zebiak-Cane coupled ocean-atmosphere model (ZC coupled model) with NCEPWSA and FSUWSA serving respectively as initialization wind are compared. The results are as follows. The distribution feature of NCEPWSA matches better with that of the observed SSTA than counterpart of FSUWSA both in 1980s and in 1990s; The ZC ocean model has a better skill under the forcing of NCEPWSA than that of FSUWSA, especially in 1990s. Meanwhile, the forecast abilities of the ZC coupled model in 1990s as well as in 1980s have been improved employing NCEPWSA as initialization wind instead of FSUWSA. Particularly, it succeeded in predicting 1997/1998 El Ni?o 6 to 8 months ahead; further analysis shows that on the antecedent and onset stages of the 1997/1998 El Ni?o event, the horizontal cold and warm distribution characteristics of the simulated SSTA from ZC ocean model, with NCEPWSA forcing compared to FSUWSA forcing, match better with counterparts of the corresponding observed SSTA, whereby providing better predication initialization conditions for ZC coupled model, which, in turn, is favorable to improve the forecast ability of the coupled model.  相似文献   

8.
Based on the studies in Part Ⅰ (see Mao et al.2003),this paper further examines the relationship between the Asian summer monsoon onset and variation in meridional position of the warm temperature ridge with a zonal orientation in mid-upper troposphere.During the Asian monsoon bursting consequentially over the Bay of Bengal,South China Sea,and South Asia,in addition to the reversal of winds in the lower and upper troposphere and deep convection before and after the onset,the atmospheric meridional temperature gradient (MTG) in the vicinity of the ridge-surface of subtropical high (WEB defined in Part Ⅰ) exhibits a significant reversal.Since the establishment of temperature structure with higher over north than over south of the WEB in the mid-upper troposphere (200-500 hPa) characterizes the collective essential that the Asian summer monsoon bursts over different areas,the MTG in mid-upper troposphere,based on the thermodynamics associated with the seasonal transition,should be a reasonable index to measure the Asian monsoon onset.The definition for onset date is proposed,and the time series of onset date for different sections are determined.As compared with the onset dates determined by other indices such as 850-hPa zonal wind and OLR.correlation analyses indicate that the 850-hPa zonal wind is only regional index,but the MTG index is applicable universally to the Asian monsoon regime.  相似文献   

9.
The nonlinear discriminant function, when covariance matrixes of each population are not equal to each other, is discussed on the basis of Bayes' criterion, and by using the stepwise discriminant method, a method for calculating the nonlinear discriminant function is provided, which is called "stepwise nonlinear discriminant analysis". In addition, an appropriate discriminant analysis model is selected by testing whether the covariance matrixes of each population are equal, which was proposed by Box. The calculations show that, the discriminant effects of this method are superior not only to linear discriminant analysis, but also to nonlinear discriminant analysis in which the stepwise discriminant algorithm is not used when covariance matrixes of each population are not equal to each other. Satisfactory results have been obtained in applying this method. This is an important improvement on the linear discriminant analysis used in the weather typing prediction at present.  相似文献   

10.
In the present study the data of wind and temperature profiles and sensible heat flux observed in Beijing inJuly and December of 1986,together with the results of water tank experiments for comparison,are used to testthe prediction models of the atmospheric mixed layer with zero order and first order assumption,respectively.The results show that the entrainment rates in summer and winter used in the zero order model are 0.15 and0.10,respectively,while its value in the first order model ranges between 0.15 and 0.19 with a lower rateat the initial stage of mixed layer development.Emphasis in the study is also placed on the relationship between the entrainmert rate and the developmentof the mixed layer.  相似文献   

11.
The southwesterly low-level jet (LLJ) over southeast China in the summer of 2003 is analyzed in this study. The analysis is based on the National Centers for Environmental Prediction (NCEP) Final (FNL) operational global analysis data on 1.0×1.0-degree grids at 6-h intervals. The major criteria for choosing the LLJ included the following: a maximum wind speed equal to or greater than 12.0 m s -1 , a wind direction of between 180° and 270°, and the height of wind maximum at 900-700 hPa, not confined to single pressure level. The results show that the LLJs over southeast China dominate at 850 and 800 hPa. These LLJs are closely associated with the topography of this area and tend to locate regions with large terrain gradients, including the northeastern and eastern Yunnan-Guizhou Plateau. Under the influence of mid-latitude westerly winds, the LLJs above 750 hPa move northward to the Yangtze-Huai River Basin. Compared to the ten-year (2000-2009) mean climate conditions, the LLJs in the warm season of summer 2003 were exceptionally active and strong, as reflected by the positive anomalies of LLJ occurrence numbers and wind speed. In addition, the 2003 LLJs showed strong diurnal variation, especially at pressure levels below 800 hPa. The majority of the LLJs appeared between midnight and the early morning hours (before 8 a.m.). Finally, the summary of LLJ grid numbers indicates that more than 80% of LLJs in June and July 2003 occurred within the 33-d rainy period. Thus, these LLJs are directly related to the anomalously heavy rainfall in the Yangtze-Huai River Basin.  相似文献   

12.
In this paper, the numerical simulation bias of the non-hydrostatic version GRAPES-Meso (Mesoscale of the Global and Regional Assimilation and Prediction System) at the resolution of 0.18o for a torrential rain case, which happened in May 31st to June 1st 2005 over Hunan province, are diagnosed and investigated by using the radiosondes, intensive surface observation, and the operational global analysis data, and the sensitivity experimental results as well. It is shown in the result that the GRAPES-Meso could reproduce quite well the main features of large-cale circulation and the distribution of the accumulated 24h precipitation and the key locations of the torrential rainfall are captured reasonably well by the model. However, bias exist in the simulation of the mesoscale features of the torrential rain and details of the relevant systems, for example, the simulated rainfall that is too earlier in model integration and remarkable underprediction of the peak value of rainfall rates over the heaviest rainfall region, the weakness of the upper jet simulation and the overprediction of the south-west wind in the lower troposphere etc. The investigation reveals that the sources of the simulation bias are different. The erroneous model rainfall in the earlier integration stage over the heaviest rainfall region is induced by the model initial condition bias of the wind field at about 925hPa over the torrential rainfall region, where the bias grow rapidly and spread upward to about 600hPa level within the few hours into the integration and result in abnormal convergence of the wind and moisture, and thus the unreal rainfall over that region. The large bias on the simulated rainfall intensity over the heaviest rainfall region might be imputed to the following combined factors of (1) the simulation bias on the strength and detailed structures of the upper-level jet core which bring about significant underpredictions of the dynamic conditions (including upper-level divergence and the upward motion) for heavy rainfall due to unfavorable mesoscale vertical coupling between the strong upper-level divergence and lower-level convergence; and (2) the inefficient coupling of the cumulous parameterization scheme and the explicit moisture in the integration, which causes the failure of the explicit moisture scheme in generating grid-scale rainfall in a certain extent through inadequate convective adjustment and feedback to the grid-scale. In addition, the interaction of the combined two factors could form a negative feedback to the rainfall intensity simulation, and eventually lead to the obvious underprediction of the rainfall rate.  相似文献   

13.
An approach is proposed for predicting turning and acceleration motion trend of the tropicalcyclones over the South China Sea for 72 h in the extrapolated track coordinates.Cross-track(CT)and along-track(AT)components are defined according to the persistently extrapolatedtrack coodinates based on observed positions at the initial and past 24 h times.A kind of straight-forward measure may be provided with CT and AT components for typhoon turning motion and ac-celeration motion.Canonical correlation analysis(CCA)is performed to reveal the correlaotions be-tween tropical cyclone tracks and environmental 500 hPa geopotential height fields.A stepwise dis-criminate analysis technique is adopted to derive the classification functions of the respective threecategories for AT and CT components.Especially,categorical combinations of CT and AT compo-nents are divided into possible 9 regions corresponding with tropical cyclone behaviors.Not onlycan 9 motion trends of a tropical cyclone be predicted,but also the location and its maximum errorat least in certain direction are available.The perfect prediction(PP)verifications indicate that thepercent corrects for the CT and AT categories are 67% and 69% in the independent samples,73%and 53% in the dependent samples,respectively,higher than that of 33.3% for random chance;moreover,the rate for successfully forecasting that in which one of the nine regions the tropical cy-clones will fall at 72 h is about 40%,also higher than the stochastic probability of 11%.Themethod has been proved to be skillful and promising.  相似文献   

14.
This paper is to examine the impact of satellite data on the systematic error of operational B-model in China.Em-phasis is put on the study of the impact of satellite sounding data on forecasts of the sea level pressure field and 500 hPaheight.The major findings are as follows.(1)The B-model usually underforecasts the strength of features in the sea level pressure(SLP)field,i.e.pressuresare too low near high pressure systems and too high near low pressure systems.(2)The nature of the systematic errors found in the 500 hPa height forecasts is not as clear cut as that of the SLPforecasts,but most often the same type of pattern is seen,i.e.,the heights in troughs are not low enough and those inridges are not high enough.(3)The use of satellite data in the B-model analysis/forecast system is found to have an impact upon the model'sforecast of SLP and 500 hPa height.Systematic errors in the vicinity of surface lows/500 hPa troughs over the oceansare usually found to be significantly reduced.A less conclusive mix of positive and negative impacts was found for allother types of features.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
The influence of thermal states in the warm pool on tropical cyclones (TCs) in the western North Pacific (WNP) is investigated. There are fewer typhoons during warm years of the warm pool in which tropical storms tend to form in the northwest quadrant and move westward. Inversely, typhoons tend to recurve northeastward to the southeast of Japan and increase in number in the southeast quadrant during cold years. Based on composite analyses, circulation-induced dynamic factors rather than thermal factors are identified as being responsible for TCs activities. During the warm state, the monsoon trough retreats westwards, which leads to anomalous vorticity in low-level and divergence in high-level in the western part of west Pacific. Above-normal TCs activity is found in this area. Furthermore, wind anomalies at 500 hPa determine the main track types. On the contrary, when the warm pool is in cold state, the atmospheric circulation is responsible for the formation of more TCs in the southeast quadrant and recurving track.  相似文献   

17.
In this paper, statistics were analyzed concerning correlation between the storm rainfall far from typhoon and non-zonal upper-level jet stream. The results show that the jet stream at 200 hPa is constantly SW (90.2 %) during the period in which storm rainfall occurs. Rainfall area lies in the right rear regions of the jet axes. While the storm intensifies, the jet tends to be stronger and turn non-zonal. With the MM4 model, numerical simulation and diagnosis were carried out for Typhoon No.9711 (Winnie) on August 19 to 20, 1997. The distant storm rainfall is tightly correlative to the jet and low-level typhoon trough. The divergence field of jet is related to the v component. The upper level can cause the allobaric wind convergence at low level. This is the result of the form of low-level typhoon trough and the strength of the storm. By scale analysis, it is found that there is a branch of middle scale transverse inverse circulation in the right entrance regions behind the jet below the 300-hPa level, which is very important to the maintenance and strengthening of storm rainfall. This branch of inverse circulation is relative to the reinforcement of jet's non-zonal characteristics. From the field of mesoscale divergence field and non-zonal wind field, we know that the stronger symmetry caused by transverse circulation in the two sides of the jet, rainfall’s feedback and reinforcement of jet’s non-zonal characteristics had lead to positive feedback mechanism that was favorable of storm rainfall’s strengthening.  相似文献   

18.
In order to clarify the statistical pattern by which landfalling strong tropical cyclones(LSTCs)influenced the catastrophic migrations of rice brown planthopper(BPH),Nilaparvata lugens(stl)in China,the data of the LSTCs in China and the lighting catches of BPH that covered the main Chinese rice-growing regions from 1979 to 2008 were collected and analyzed in this work with the assistance of ArcGIS9.3,a software of geographic information system.The results were as follows:(1)In China,there were 220 strong tropical cyclones that passed the main rice-growing regions and 466 great events of BPH’s immigration in the 30 years from 1979 to 2008.73 of them resulted in the occurrence of BPH’s catastrphic migration(CM)events directly and 147 of them produced indirect effect on the migrations.(2)The number of the LSTCs was variable in different years during 1979 to 2008 and their influence was not the same in the BPH’s northward and southward migrations in the years.In the 30 years,the LSTCs brought more obvious influence on the migrations in 1980,1981,2005,2006 and 2007.The influence was the most obvious in2007 and all of the 7 LSTCs produced remarkable impact on the CMs of BPH’s populations.The effect of the LSTCs on the northward immigration of BPH’s populations was the most serious in 2006 and the influence on the southward immigration was the most remarkable in 2005.(3)In these years,the most of LSTCs occurred in July,August and September and great events of BPH's immigration occurred most frequently in the same months.The LSTCs played a more important role on the CM of BPH’s populations in the three months than in other months.(4)The analysis on the spatial distribution of the LSTCs and BPH’s immigration events for the different provinces showed that the BPH’s migrations in the main rice-growing regions of the Southeastern China were influenced by the LSTCs and the impact was different with the change of their spatial probability distribution during their passages.The most serious influence of the LSTCs on the BPH’s migrations occurred in Guangdong and Fujian provinces.(5)The statistical results indicated that a suitable insect source is an indispensable condition of the CMs of BPH when a LSTC influenced a rice-growing region.  相似文献   

19.
In this paper, an idealized perturbation following the "surge-flow conceptual model" for typical Meiyu frontal structure is designed to explain the β meso-scale structure of rainbands in the Meiyu front using a non-hydrostatic, full-compressible storm-scale model including multi-phase microphysical parameterization. In addition, sensitivity numerical experiment on the vertical distribution of the ambient meridional wind is conducted to investigate the generation mechanism of β meso-scale double rainbands. The results of numerical experiments show that the cool and dry downdraft invading strengthened by the environmental aloft northerly wind plays a very important role to the generation and maintenance of the β meso-scale double rainbands. Moreover, the intensity and scale of the dry and cool downdraft invading are related to the intensity of the second circumfluence induced by mass adjustment when the acceleration of the westerly jet aloft occurs.  相似文献   

20.
Downburst is a very dangerous weather phenomenon for aeroplane taking off or landing. Inorder to understand the initial formation and evolution of downburst and to study the effects of at-mospheric environment condition and the microstructure of cloud-precipitation particles on thedownburst development processes, we have designed and carried out a modeling scheme by makinguse of our own non-hydrostatic compressible mesoscale-γ model including necessary cloud-precipi-tation processes. The initial conditions of temperature, humidity and wind are from an observationcase in which the downburst occurred. The results of computations demonstrate the evolution ofdownburst and show the variation of various environmental and microphysical parameters. Some ofthe mechanisms about the downburst occurrence have been obtained. Computation results mayhelp airport forecasters to determine the occurrence of downburst better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号