首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙建设 《数学通报》2003,(11):40-40
H .Minc和L .Sathre在 [1 ]中证明了下面不等式 :对一切自然数n ,有nn+ 1 (n+ 1 ) n n+ 1n+ 2n(n+1 ) ( 3)当n=1时 ,不等式 ( 3)显然成立 .假设不等式 ( 3)对n=k(k≥ 1 )成立 ,即k !>(k+ 1 ) k k + 1k+ 2k(k+1 ) ( 4 )不等式 ( 4 )的两边乘以k+ 1得到(k+ 1 ) !>(k+ 1 ) k+1 k + 1k+ 2k(k…  相似文献   

2.
为什么要证明不等式k~(1/2)+1/(k+1)~(1/2)>(k+1)~(1/2)下面通过实例来说明,高中数学第三册P.147.3(4)题:求证1/1~(1/2)+1/2~(1/2)+…+1/n~(1/2)>n~(1/2)(n>1)。我们用数学归纳法来证明。 (1)当n=2时不等式左边=1/1~(1/2)+1/2~(1/2)=(2+2~(1/2))/2右边=2~(1/2)=(2~(1/2)+2~(1/2))/2,显然不等式成立。 (2)假设当n=k(k>1)时不等式成立,  相似文献   

3.
文 [1 ]给出了一个关于kn的不等式猜想 ,猜想的右侧不等式是 :正整数n ,k >1 ,则nk 2时 ,( 1 )式成立 .为证明上述结论 ,先给出两个引理引理 1  [贝努利 (Bernoulli)不等式 ]若x >- 1且k是正整数 ,则 ( 1 +x) k≥ 1 +kx .等号当且仅当x =0时成立 .利用二项式定理易证引理 1 .引理 2 [2 ]  若 - 1 相似文献   

4.
数学归纳法应用功能的拓广   总被引:1,自引:1,他引:0  
人们通常认为 ,数学归纳法用于证明与自然数有关的命题 ,采用的是等距的“间断归纳”(第二步无限递推从n =k命题成立 ,推出n =k+1时命题成立) ,是否存在等距的(或不等距的 )“连续归纳”?一、连续归纳证不等式一例下面抛砖引玉 ,以一个不等式的证明对此作出了正面的回答 ,希望有兴趣的读者继续研究 ,探索发现“连续归纳”更多的应用 .例 证明不等式 :2 x>97x2 ,x∈ (6,+∞ )证明  (6,+∞ ) =(6,7]∪(7,8]∪…∪ (n ,n+1 ]∪… ,x∈ (6 ,7]时 ,2 x>2 6=64,97x2 ≤ 97× 72 =63,这就证明了n =6 ,x∈[6,7)时不等式 2 x>97x2 成立 ;假设n =k时…  相似文献   

5.
命题 任意一个有 n根头发的人都是“秃子”( n∈ N+ ) .证明  (用数学归纳法 )( 1 )只有一根头发的人显然是“秃子”,即当 n =1时 ,命题成立 ;( 2 )假设 n =k( k∈ N+ )时命题成立 ,即有 k根头发的人是“秃子”,而一个“秃子”的头上再长出一根头发以后仍为“秃子”,这就是说 ,n =k + 1时 ,命题也成立 .由 ( 1 )、( 2 )可知 ,当 n∈ N+ 时 ,命题成立 .即人皆“秃子”.诡辩揭秘 用数学归纳法可以证明与自然数有关的数学命题 ,但由于该命题中所涉及的对象——“秃子”不具备“确定性”的特征 ,不能构成普通意义上的集合 (康托集 ) ,这是…  相似文献   

6.
数学归纳法是关于自然数n的性质p(n) ,若1) p(n0 )成立 ,n0 ∈N ;2 )假设 p(k)成立 (k≥n0 ) ,可以推出p(k + 1) 成立 .则 p(n)对于一切大于或等于n0 的自然数都成立 .数学归纳法是中学数学中的一种重要方法 ,在证明与自然数有关的命题时 ,我们常常采用数学归纳法 .应用数学归纳法有固定的程式 ,书写时 ,必须严格按照程式写出两个基本步骤 ,但在具体应用上具有极大的灵活性 ,在证明第二个步骤时常常用到一些非常巧妙的技巧 .例 1  (1999年全国高考试题 )已知函数y =f(x) 的图象是自原点出发的一条折线 ,当n≤y≤n + 1(n =0 ,1,2 ,… )时 ,…  相似文献   

7.
(一) 数学归纳法是中学数学中的一个重要的证明方法。一个与自然数n有关的命题P(n),常常可以用数学归纳法予以证明。证明的步聚分为两步: (1) 验证当n取第一个值n_0时,命题P(n_0)成立; (2) 假设当n=k(k∈N,k≥n_0)时,命题P  相似文献   

8.
浅谈不等式证明的几种特殊方法   总被引:1,自引:0,他引:1  
不等式的证明在数学中是比较常见的题型 ,但有些不等式用常见的方法 (如比较法、分析法和综合法等 )很难证出来 ,或者根本证不出来 .这里介绍几种特殊的证法 ,解决一些不等式的证明问题 .1 数学归纳法数学归纳法是数学中解决证明题很重要的一种方法 ,在不等式证明中也不例外 ,对于与自然数有关的不等式都可以考虑这种方法 .例 1 证明 :|sinnx|≤n|sinx|对任何自然数都成立 .证  1 )当n =1时 ,不等式显然成立 ;2 )假设n =k时 ,不等式成立 ,即  |sinkx|≤k|sinx|成立 .当n =k +1时 ,  |sin(k +1 )x|=|si…  相似文献   

9.
斐波那契数列是满足递推关系式F1 =F2 =1Fn =Fn-1 Fn-2 ,n >2的数列 { Fn} .本文研究了它与组合数和勾股数的两个关系 .为了研究的方便 ,本文约定 ,当 k <0或s>n时 ,Ckn =Csn =0 .引理 1  ∑nj=0(- 1) j Cjn Fr 2 (n-j) =Fr n.证明  (用数学归纳法证明 )当 n=1时 ,Fr 2 - Fr=Fr 1 ,结论成立 .假设当 n =k时成立 ,即∑kj=0(- 1) j Cjk Fr 2 (k-j) =Fr k.那么 ,当 n =k 1时 , ∑k 1j=0(- 1) j Cjk 1 Fr 2 (k 1 -j)=∑k 1j=0(- 1) j(Cjk Cj-1 k ) Fr 2 (k 1 -j)=∑k 1j=0(- 1) j Cjk Fr 2 (k 1 -j) ∑k 1…  相似文献   

10.
王易 《数学通讯》2012,(8):30-32
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用.它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依  相似文献   

11.
俞新龙 《数学通报》2006,45(2):36-37
在二项式内容中曾做到这样一题:例题证明C1n 2C2n 3C3n … nCnn=n·2n-1(n∈N*).1例题的证法研究本题一般常见的证明方法有3种.证明1(数学归纳法)n=1时,左边=C11=1,右边=1·21-1=1,等式成立;假设n=k(k≥1)时等式也成立,即C1k 2C2k 3C3k … kCkk=k·2k-1,则n=k 1时,C1k 1 2C2k 1  相似文献   

12.
1 引子高中《代数》下册复习题六第33题是:“用数学归纳法证明:1+ 12+ 13+…+1n>n (n>1,n∈N)”.此题很容易用数学归纳法证明,证明后我们自然会反思:此题是如何发现的?如何用推导的方法证明.使用放缩思想可得方法一:1+ 12+ 13+…+ 1n>1n+ 1n+…+ 1n=n·1n=n .由裂项求和的思想可想到方法二:n =(n - n- 1) + (n- 1-n- 2 ) + (n- 2 - n- 3) +…+ (2 - 1) +(1- 0 ) =1n + n- 1+ 1n- 1+ n- 2+…+12 + 1+ 11+ 0 .而n - n- 1=1n + n- 1,所以欲证原不等式,只需证1n>1n + n- 1(n>1) ,(当n=1时,取等号) .此不等式显然成立,所以原不等式得证.2 探索…  相似文献   

13.
用数学归纳法证明问题时,关键一步是利用归纳假设,从n=k推到n=k 1时的情形.这一步有时很容易入手.例如归纳假设1 2  相似文献   

14.
原题:实数a1,a2,…an满足al+a2+…+an=0.   求证:max(ak2)≤n/3 (aI-aI+1)2.   (2006中国数学奥林匹克第一天第一题[1])   本题可以用数学归纳法解决.   当n=2时,结论显然成立;   假设对n个变量时,命题成立.……  相似文献   

15.
等差与等比数列不等式的互变   总被引:1,自引:0,他引:1  
含有等差或等比数列若干项的不等式 ,为行文方便不妨叫做等差或等比数列不等式 .本文研究这两种不等式的互变 .为了叙述简便 ,本文规定数列 {an}是公差为d的等差数列 ,其前n项的和为Sn,数列 {bn}是公比为 q的等比数列 ,其前n项的积为Tn,m ,n ,k是互不相等的正自然数 .通过下面等差与等比数列互换表中的an 与bn 等的互换 ,能够实现这两种不等式的互变 ,但互换两种运算时 ,应注意它们的基本要求 .  引理 1 若mk =n2 ,则m +k >2n .证 m +k >2mk =2n2 =2n .引理 2 若m +k =2n ,则mk 相似文献   

16.
一、求证 :f(n) =an + 2 +(a +1 ) 2n + 1被a2 +a +1整除 ,其中a是整数 ,n是自然数 .证明 :( 1 )当n =0时 ,f( 0 ) =a2 +(a +1 ) =a2 +a+1能被a2 +a +1整除 .( 2 )假设当n =k时 ,f(k) =ak+ 2 +(a +1 ) 2k+ 1能被a2 +a +1整除 .当n =k +1时 ,有f(k +1 ) =ak+ 3 +(a +1 ) 2 (k + 1) + 1=a·ak + 2 +(a+1 ) 2k+ 1·(a+1 ) 2=a·ak+ 2 +a2 ·(a +1 ) 2k + 1+2a·(a +1 ) 2k+ 1+(a+1 ) 2k + 1=[a·ak+ 2 +a·(a +1 ) 2k+ 1]+[a2 (a +1 ) 2k+ 1+a·(a +1 ) 2k + 1+(a+1 ) 2k+ 1]=a[ak + 2 +(a+1 ) 2k + 1]+(a +1 ) 2k + 1·(a2 +a +1 ) .∵a是整数…  相似文献   

17.
皮亚诺公理的第 5条性质 :任意一个正整数集合 ,如果包含 1 ,并且假设包含x ,也一定包含它的后继x + 1 ,那么这个集合包含所有的正整数 .这条性质就是数学归纳法的依据 ,通常称为数学归纳法原理 .这一原理可以用数学符号来表示 :数学归纳法原理 :如果S是正整数集合N+的一个子集 ,且满足 :① 1∈S ;  ②若k∈S ,则k + 1∈S ,那么S =N+.根据数学归纳法原理 ,可以得到数学归纳法 :设 p(n)是一列与正整数有关的数学命题 ,如果满足 :①p(n)当n =n0 (n0 是使 p(n)正确的最小正整数 )时正确 ,即 p(n0 )正确 ;②在假设 p(k) (k≥n0 ,k∈N+)正…  相似文献   

18.
题设n∈N且n≥3。试证明 2~(n(n+1))/2>(n+1)! 该不等式如果采用数学归纳法证明,其过程较繁杂,若仔细分析所证结论,不等式左边的指数中底数为2,联想到二项式定理推得的组合公式2~n=C_n~0+C_n~1+…+C_n~n>C_n~0+C_n~1=1+n。即2~n>n+1(n∈N 且n>1),就可使问题迎刃而解。  相似文献   

19.
数学归纳法是以归纳公理——“如果某个命题A(n):(1)当n=1时(真),(2)从假设n~(-k)此命题为真,得出n取下一个值即n=k+1  相似文献   

20.
王海平 《数学通讯》2003,(22):33-35
选择题 本大题共 12小题 ,每小题 5分 ,共 6 0分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 .1.若an =1- 12 2 1- 132 … 1- 1n2 ,则limn→∞an= (   )(A) 1.  (B) 0 .  (C) 12 .  (D)不存在 .2 .函数 f(x)在x =x0 处连续是函数 f(x)在x=x0 处有极限的 (   )(A)充分不必要条件 .(B)必要不充分条件 .(C)充要条件 .(D)不充分不必要条件 .3.用数学归纳法证明不等式“1+ 12 + 14 +…+ 12 n - 1>12 76 4成立” ,则n的第一个值应取 (   )(A) 7.   (B) 8.   (C) 9.   (D) 10 .4 .函数 f(x) =|x|在x =0处 (   )(…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号