首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previously reported enantioselective LC-MS assay for the determination of (R)- and (S)-methadone [Met] and (R)- and (S)-2-ethylidene-1,5-dimethyl-3,3-diphenyl-pyrrolidine [EDDP] (the primary metabolite of Met) has been adapted for use in the simultaneous determination of the plasma concentrations of Met, EDDP, buprenorphine (Bu) and norbuprenorphine (norBu). All of the target compounds were separated within 15 min using an alpha1-acid glycoprotein chiral stationary phase, a mobile phase composed of acetonitrile: ammonium acetate buffer [10 mM, pH 7.0] in a ratio of 18:82 (v/v), a flow rate of 0.9 ml/min at 25 degrees C. Deuterium labeled compounds were used as internal standards [d4-Bu, d3-norBu, (R,S)-d3-Met and (R,S)-d3-EDDP] and linear relationships between peak height ratios and drug concentrations were obtained for Bu and norBu in the range 0.2-12 ng/ml with correlation coefficients greater than 0.999. The relative standard deviations (%R.S.D.) for the intra- and inter-day precision of the method were <4.5% and for accuracy was <4.0%. The method was validated and used to analyze plasma samples obtained from opioid dependent methadone-maintained adults enrolled in a research study.  相似文献   

2.
Five selective serotonin reuptake inhibitors (SSRIs) have been introduced recently: citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline. Although no therapeutic window has been defined for SSRIs, in contrast to tricyclic antidepressants, analytical methods for therapeutic drug monitoring of SSRIs are useful in several instances. SSRIs differ widely in their chemical structure and in their metabolism. The fact that some of them have N-demethylated metabolites, which are also SSRIs, requires that methods be available which allow therapeutic drug monitoring of the parent compounds and of these active metabolites. Most procedures are based on prepurification of the SSRIs by liquid-liquid extraction before they are submitted to separation by chromatographic procedures (high-performance liquid chromatography, gas chromatography, thin layer chromatography) and detection by various detectors (UV, fluorescence, electrochemical detector, nitrogen-phosphorus detector, mass spectrometry). This literature review shows that most methods allow quantitative determination of SSRIs in plasma, in the lower ng/ml range, and that they are, therefore, suitable for therapeutic drug monitoring purposes of this category of drugs.  相似文献   

3.
For the first time, an LC–MS–MS method has been developed for the simultaneous analysis of buprenorphine (BUP), norbuprenorphine (NBUP), and buprenorphine–glucuronide (BUPG) in plasma. Analytes were isolated from plasma by C18 SPE and separated by gradient RP-LC. Electrospray ionization and MS–MS analyses were carried out using a PE-Sciex API-3000 tandem mass spectrometer. The m/z 644→m/z 468 transition was monitored for BUPG, whereas for BUP, BUP-d4, NBUP, and NBUP-d3 it was necessary to monitor the surviving parent ions in order to achieve the required sensitivity. The method exhibited good linearity from 0.1 to 50 ng/ml (r2≥0.998). Extraction recovery was higher than 77% for BUPG and higher than 88% for both BUP and NBUP. The LOQ was established at 0.1 ng/ml for the three analytes. The method was validated on plasma samples collected in a controlled intravenous and sublingual buprenorphine administration study. Norbuprenorphine–glucuronide was also tentatively detected in plasma by monitoring the m/z 590→m/z 414 transition.  相似文献   

4.
A simple reversed-phase HPLC method with ultraviolet detection for the simultaneous measurement of lofepramine and desipramine is described. Only a single alkaline extraction was used, with clomipramine as internal standard. The column used was to Supelco PCN column, and the mobile phase was acetonitrile-methanol-0.015 M phosphate buffer (120:35:100, v/v). The average recoveries were 78.8% for desipramine and 103.8% for lofepramine, and limits of quantitation were 25 and 5 nmol/1, respectively. The inter-assay C.V.s for lofepramine and desipramine were 6.0 and 7.6%, respectively. The method is specific and has excellent accuracy, and has been used for therapeutic drug monitoring of patients with depressions treated with lofepramine. Mean steady-state plasma concentrations found for lofepramine and desipramine were 8.5 ± 6.1 and 123.6 ± 120.6 nmol/l, respectively. It is concluded that lofepramine in itself has an antidepressive effect.  相似文献   

5.
Therapeutic drug monitoring can involve quantitation in either microgram, nanogram or picogram concentrations present in a complex biological matrix (whole blood, urine or tissue).The chemical structure of a compound influences not only the analytical method best suited to its quantitation, but also its acid/base character (PKa) and its extractability. The dose administered, the bioavailability of the dosage form, and the pharmacokinetic profile of the drug govern the circulating concentrations of either the parent drug and/or its metabolites present in vivo, and dictate the ultimate sensitivity and specificity required of the analytical method.The degree of sample preparation required is dependent on the analytical method used (gas—liquid chromatography, thin-layer chromatography, high-performance liquid chromatography) and on the tolerance of the specific type of detection system to contamination. Factors leading to compound losses during sample preparation (adsorption, stability) are critical at low concentrations and can adversely affect the reliability of an assay, therefore maximizing the overall recovery of the assay is essential not only for high sensitivity but also for good precision and accuracy. Therefore, the criteria to be used in sample preparation should aim to optimize all of the above factors in the overall development of a reliable and validated method for the compound suitable for use in clinical therapeutic monitoring.  相似文献   

6.
A sensitive, specific, reproducible and rapid high-performance liquid chromatographic method for the simultaneous quantitation of betamethasone, betamethasone 21-acetate and hydrocortisone in biological fluids is described. Hydrocortisone acetate is used as an internal standard and the samples are extracted with dichloromethane before chromatographing on a reversed-phase system. Detection at two ultraviolet wavelengths (254 nm and 240 nm) was used to assess the specificity of the system, and the sensitivity was found to be greater than 10 ng for all steroids. The speed with which this assay can be performed makes it particularly useful for pharmacokinetic studies, and plasma concentration—time profiles resulting from the administration of betamethasone phosphate and betamethasone acetate are presented.  相似文献   

7.
A highly sensitive and selective high-performance liquid chromatographic assay has been developed for the separation and quantitation of tolmetin and its major metabolite in human biological fluids, viz. plasma, urine and synovial fluid. Analysis of plasma and synovial fluid required only 0.5 ml of the sample. The sample was washed with diethyl ether and extracted with diethyl ether—chloroform (2:1). The extracted compounds were injected onto a reversed-phase column (RP-2) and absorbance was measured at 313 nm. The standard curves in plasma were found to be linear for both tolmetin and the metabolite at concentrations from 0.04 to 10.0 μg/ml. Urine samples (0.5 ml) were diluted (1:1) with methanol containing the internal standard and were directly injected onto the reversed-phase (RP-2) column. Standard curves of tolmetin and metabolite in urine were linear in the range 5–300 μg/ml. Serum and synovial fluid concentrations of tolmetin and its metabolite in patients receiving multiple doses of tolmetin sodium were determined using the assay procedure.  相似文献   

8.
We describe the first studies of a simple and sensitive spectrofluorimetric and spectrophotometric methods for the analysis of nalbuphine (NLB) in dosage form and biological fluids. The spectrofluorimetric method was based on the oxidation of NLB with Ce(IV) to produce Ce(III) and its fluorescence was monitored at 352 nm after excitation at 250 nm. The spectrophotometric method involves addition of a known excess of Ce(IV) to NLB in acid medium, followed by determination of residual Ce(IV) by reacting with a fixed amount of methyl orange and measuring absorbance at 510 nm. In both methods, the amount of Ce(IV) reacted corresponds to the amount of NLB and measured fluorescence or absorbance were found to increase linearly with the concentration of NLB, which are corroborated by correlation coefficients of 0.9997 and 0.9999 for spectrofluorimetric and spectrophotometric methods, respectively. Different variables affecting the reaction conditions such as concentrations of Ce(IV), type and concentration of acid medium, reaction time, temperature, and diluting solvents were carefully studied and optimized. The accuracy and precision of the methods were evaluated on intra‐day and inter‐day basis. The proposed methods were successfully applied for the determination of NLB in pharmaceutical formulation and biological samples with good recoveries. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A simultaneous assay for moricizine, its two sulphoxidation metabolites, morizine sulphoxide and moricizine sulphone, using high-performance liquid chromatography (HPLC) is described. The drug and metabolites and clozapine (internal standard) in biological fluids were extracted using pentanesulphonic acid into diethyl ether. The ethereal extract was evaporated to dryness and the residue was redissolved in the mobile phase (methanol-water-triethylamine, 65:35:0.5, v/v). The analyses were performed on a μBondapak reversed-phase C18 column housed in a Waters Z-module, linked to a C18 pre-column, with a run-time of 12 min. The retention times were 2.7, 3.5, 6.2 and 9.7 min for moricizine sulphone, moricizine sulphoxide, moricizine and clozapine, respectively. The recovery of the compounds from plasma ranged from 89.9% for the sulphoxide to 98.1% for clozapine. The limits of detection of the assay for moricizine, moricizine sulphoxide and moricizine sulphone were 20, 10 and 5 ng/ml, respectively.  相似文献   

10.
A sensitive gas chromatographic method for the quantitative determination of the new antibacterial and antifungal drug G1, 1-(5-bromofuran-2-yl)-2-bromo-2-nitroethene, has been optimized. The method involves a fast and single extraction step from spiked serum and urine samples. The G1 drug was quantified using an internal standard method and by means of a nitrogen-selective detector. The results are statistically significant and show that mean levels of G1 as low as 1 μg ml−1 can be measured accurately.  相似文献   

11.
A liquid chromatography with an electrochemical detector method has been developed for the quantitative measurement for three diamine derivatives (p-phenylenediamine, N,N(')-p-phenylenebisacetamide, and 4-aminoacetanilide) in human urine and rabbit blood, urine, and feces. The detection cell consisted of a glassy carbon electrochemical signal obtained with a supporting electrolyte containing 20% methanol-5mM octylammonium orthophosphate (pH 6.30) as the mobile phase. A comparison of the results obtained from HPLC-UV shows agreement.  相似文献   

12.
13.
A new high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of metampicillin and its metabolite ampicillin in biological fluids. The plasma, urine and bile samples were injected onto a precolumn packed with LiChrosorb RP-8 (25–40 μm) after simple dilution with an internal standard solution in 0.05 M phosphate buffer (pH 7.0). The polar plasma components were washed out using 0.05 M phosphate buffer (pH 7.0). After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by an Ultracarb 5 ODS-30 column with a gradient system of acetonitrile-0.02 M phosphate buffer (pH 7.0) as the mobile phase. The method showed excellent precision, accuracy and speed with a detection limit of 0.1 μg/ml. The total analysis time per sample was less than 40 min and the coefficients of variation for intra- and inter-assay were less than 5.1%. This method has been successfully applied to plasma, urine and bile samples from rats after intravenous injection of metampicillin.  相似文献   

14.
An HPLC method for the simultaneous determination of both caffeine and theophyllie in human plasma is described, using a reversed-phase chromatography column, heated by a thermostatic oven at 35°C, with UV detection and isocratic elution. The linearity and reproducibility of the method are verified. For the two drugs, the limit of detection is 0.1 μg ml−1. This analytical method is rapid and reliable and allows routine controls of therapeutic levels of theophylline and caffeine, especially in premature infants where the volume of plasma samples is very small.  相似文献   

15.
A method for the stereoselective determination of D- and L-enantiomers of selenomethionine in mouse plasma was developed using gas chromatography-mass spectrometry with selected-ion monitoring (GC-MS-SIM). DL-[(2)H(3,)(82)Se]selenomethionine was used as analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. Selenomethionine enantiomers in mouse plasma were purified by cation-exchange chromatography using BondElut SCX cartridge and derivatized with HCl in methanol to form methyl ester followed by subsequent N-acylation with optically active (+)-α-methoxy-α-trifluoromethylphenylacetyl chloride to form diastereomeric amide. Quantification was performed by SIM of the molecular-related ions of the diastereomers on the chemical ionization mode. The intra- and inter-day precision for D- and L-selenomethionine spiked to mouse plasma gave good reproducibility with relative standard deviation of 3% and 3% for D-selenomethionine and 6% and 3% for L-selenomethionine, respectively. The estimated amounts were in good agreement with the actual amounts spiked, the intra- and inter-day relative error being 5% and 2% for D-selenomethionine and 2% and 1% for L-selenomethionine, respectively. The present method is sensitive enough to determine pharmacokinetics of selenomethionine enantiomers.  相似文献   

16.
Potentiometric determination of chloride in biological fluids   总被引:34,自引:0,他引:34  
  相似文献   

17.
18.
Rapid determination of salicylate in biological fluids   总被引:34,自引:0,他引:34       下载免费PDF全文
  相似文献   

19.
20.
Antiepileptic drugs are among the most common medications that require therapeutic drug monitoring (TDM). Indeed, TDM provides a realistic approach to adjust drug doses for epilepsy based on plasma concentrations to optimize its clinical outcome. The most common technique for TDM is high-performance liquid chromatography, which has a very low green profile among analytical techniques. Perampanel (PER) is an inherently fluorescent compound that its fluorophore readily allows sensitive and quantitative measurements. This paper describes the development and validation of a sensitive, specific, and eco-friendly spectrofluorimetric method for the determination of PER. Experimental parameters affecting fluorescence intensity of the compound, including solvent dilution, temperature, and excitation wavelength, were studied and optimized. The developed spectrofluorimetric method was established in acetonitrile at λex = 295 nm and λem = 431 nm over a concentration range of 5–60 ng/ml. The adopted method was applied for the determination of PER in human plasma; it was effective in the range of 15–50 ng/ml. The proposed method was found to be sensitive and specific for PER and can be applied successfully in TDM of PER and in quality control laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号