首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alzheimer's disease (AD) is associated with beta-amyloid accumulation, oxidative stress and mitochondrial dysfunction. However, the effects of genetic mutation of AD on oxidative status and mitochondrial manganese superoxide dismutase (MnSOD) production during neuronal development are unclear. To investigate the consequences of genetic mutation of AD on oxidative damages and production of MnSOD during neuronal development, we used primary neurons from new born wild-type (WT/WT) and amyloid precursor protein (APP) (NLh/NLh) and presenilin 1 (PS1) (P264L) knock-in mice (APP/PS1) which incorporated humanized mutations in the genome. Increasing levels of oxidative damages, including protein carbonyl, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT), were accompanied by a reduction in mitochondrial membrane potential in both developing and mature APP/PS1 neurons compared with WT/WT neurons suggesting mitochondrial dysfunction under oxidative stress. Interestingly, developing APP/PS1 neurons were significantly more resistant to beta-amyloid 1-42 treatment, whereas mature APP/PS1 neurons were more vulnerable than WT/WT neurons of the same age. Consistent with the protective function of MnSOD, developing APP/PS1 neurons have increased MnSOD protein and activity, indicating an adaptive response to oxidative stress in developing neurons. In contrast, mature APP/PS1 neurons exhibited lower MnSOD levels compared with mature WT/WT neurons indicating that mature APP/PS1 neurons lost the adaptive response. Moreover, mature APP/PS1 neurons had more co-localization of MnSOD with nitrotyrosine indicating a greater inhibition of MnSOD by nitrotyrosine. Overexpression of MnSOD or addition of MnTE-2-PyP(5+) (SOD mimetic) protected against beta-amyloid-induced neuronal death and improved mitochondrial respiratory function. Together, the results demonstrate that compensatory induction of MnSOD in response to an early increase in oxidative stress protects developing neurons against beta-amyloid toxicity. However, continuing development of neurons under oxidative damage conditions may suppress the expression of MnSOD and enhance cell death in mature neurons.  相似文献   

2.
目的 探讨转铁蛋白受体1(TfR1)在淀粉样蛋白前体(APP)/早老素1(PS1)转基因小鼠脑内异常表达情况及其对阿尔茨海默病(AD)神经元的保护作用。 方法 首先,利用免疫荧光及Western blotting技术检测出生后1月(P1M)至P12M各发育时间点,APP/PS1转基因小鼠与野生型小鼠大脑TfR1的表达情况;其次,取APP/PS1转基因与野生型新生小鼠原代海马神经元培养,培养12 d后利用TfR1 shRNA质粒干扰TfR1基因的表达,利用Western blotting技术检测干扰后细胞TfR1的表达变化;ELISA技术检测TfR1干扰前后细胞β-淀粉样蛋白(Aβ)1-42的分泌量;利用微管相关蛋白2(MAP2)标记神经元突起,观察TfR1干扰前、后神经元突起的生长变化;最后,利用FM1-43染色观察由TfR1介导的轴质运输中囊泡的运输情况。 结果 在APP/PS1转基因小鼠生长发育过程中,随着年龄的增长TfR1的表达呈现先增加后减少的趋势,在P6M之后明显降低,且与对照组相比差异有显著性;TfR1 shRNA 干扰后可以使原代神经元细胞内TfR1基因沉默,使其突起明显变细、变长并影响囊泡的运输。与对照组相比,TfR1基因在APP/PS1转基因小鼠原代神经元中表达量减少,荧光减弱。 结论 APP、PS1基因突变可导致TfR1的表达下降;APP/PS1转基因小鼠原代神经元经TfR1 shRNA干扰Aβ1-42分泌量增多,影响神经元突起的生长,使轴质运输速率减慢,囊泡的活动减缓,加重AD病情。故TfR1的表达可以对神经元起到保护作用。  相似文献   

3.
目的观察APP/PS1双转基因AD小鼠神经细胞凋亡,及内质网分子伴侣葡萄糖调节蛋白(GRP78)和内质网促凋亡因子半胱氨酸蛋白酶-12(Caspase-12)表达的改变,探讨APP/PS1双转基因AD小鼠早期内质网应激诱导的凋亡。方法选取5、7月龄的APP/PS1双转基因小鼠和同月龄同背景的野生型小鼠(WT),分为5月龄WT组、5月龄APP/PS1组、7月龄WT组和7月龄APP/PS1组,每组6只,应用原位细胞凋亡检测法(TUNEL)检测凋亡细胞,免疫组织化学方法检测其脑内GRP78和Caspase-12的表达水平。结果 TUNEL检测凋亡率分别为7月龄APP/PS1鼠(35.0±6.31)%、5月龄APP/PS1鼠(9.0±2.78)%、7月龄WT鼠(4.0±1.89)%、5月龄WT鼠(4.0±1.83)%,其中7月龄APP/PS1鼠凋亡率显著升高(P〈0.05);免疫组织化学检测GRP78阳性率分别为7月龄APP/PS1鼠(30.0±5.43)%、5月龄APP/PS1鼠(10.0±2.12)%、7月龄WT鼠(2.0±1.71)%、5月龄WT鼠(3.0±1.41)%,7月龄APP/PS1鼠GRP78表达明显升高(P〈0.05);免疫组织化学检测Caspase-12阳性率分别为7月龄APP/PS1鼠(33.0±5.98)%、5月龄APP/PS1鼠(12.0±2.60)%、7月龄WT鼠(4.0±2.56)%、5月龄WT鼠(2.0±1.79)%,7月龄APP/PS1鼠Caspase-12表达明显升高(P〈0.05)。结论 7月龄的APP/PS1双转基因小鼠出现了内质网应激诱导的凋亡。本实验结果为临床AD早期预防和治疗提供了重要依据。  相似文献   

4.
Environmental enrichment has been used in a variety of transgenic mouse models of Alzheimer's disease (AD), however, with conflicting results. Here we studied the influence of environmental enrichment in a severely affected AD mouse model, showing a multiplicity of pathological alterations including hippocampal neuron loss. APP/PS1KI and wild type (WT) control mice were housed under standard conditions or in enriched cages equipped with various objects and running wheels. Amyloid plaque load, motor and working memory performance, axonopathy, as well as CA1 neuron number and hippocampal neurogenesis were assessed. Although a partial improvement in motor performance was observed, 4 months of enriched housing showed no beneficial effects in terms of working memory, Aβ plaque pathology, or neuron loss in APP/PS1KI mice. In addition, no changes in hippocampal neurogenesis and even an aggravation of the axonal phenotype were detected with a tendency toward a premature death. The APP/PS1KI model represents a model for mild to severe AD showing early behavioral deficits starting at 2 months of age with fast deterioration. Therefore our data might suggest that physical activity and enriched environment might be more beneficial in patients with mild cognitive impairment than in patients with incipient AD.  相似文献   

5.
Caloric restriction (CR) mitigates neurological damage arising from aging and a variety of other sources, including neuropathology in young adult mice that express single and double transgenic (tg) mutations associated with Alzheimer disease (AD). To evaluate the potential of CR to protect against relatively heavy AD-type pathology, middle-aged (13–14-month-old) mice that co-express two mutations related to familial AD, amyloid precursor protein (APP) and presenilin 1 (PS1), were fed balanced diets with 40% fewer calories than ad libitum-fed controls. Following 18 weeks of treatment, mice were killed and brains were processed for quantification of total volume of amyloid-beta (Aβ) in the hippocampal formation and the overlying neocortex. Computerized stereology confirmed that CR reduced the total Aβ volume by about one-third compared to that in age-matched controls. Thus, CR appears to attenuate the accumulation of AD-type neuropathology in two cortical brain regions of middle-aged dtg APP/PS1 mice. These findings support the view that CR could be a potentially effective, non-pharmacology strategy for reducing relatively heavy Aβ deposition in older adult dtg APP/PS1 mice, and possibly afford similar protection against the onset and progression of AD in older adult humans.  相似文献   

6.
Mechanisms of neuronal loss in Alzheimer’s disease (AD) are poorly understood. Here we show that apoptosis is a major form of neuronal cell death in PS/APP mice modeling AD-like neurodegeneration. Pyknotic neurons in adult PS/APP mice exhibited apoptotic changes, including DNA fragmentation, caspase-3 activation, and caspase-cleaved α-spectrin generation, identical to developmental neuronal apoptosis in wild-type mice. Ultrastructural examination using immunogold cytochemistry confirmed that activated caspase-3-positive neurons also exhibited chromatin margination and condensation, chromatin balls, and nuclear membrane fragmentation. Numbers of apoptotic profiles in both cortex and hippocampus of PS/APP mice compared with age-matched controls were twofold to threefold higher at 6 months of age and eightfold higher at 21 to 26 months of age. Additional neurons undergoing dark cell degeneration exhibited none of these apoptotic features. Activated caspase-3 and caspase-3-cleaved spectrin were abundant in autophagic vacuoles, accumulating in dystrophic neurites of PS/APP mice similar to AD brains. Administration of the cysteine protease inhibitor, leupeptin, promoted accumulation of autophagic vacuoles containing activated caspase-3 in axons of PS/APP mice and, to a lesser extent, in those of wild-type mice, implying that this pro-apoptotic factor is degraded by autophagy. Leupeptin-induced autophagic impairment increased the number of apoptotic neurons in PS/APP mice. Our findings establish apoptosis as a mode of neuronal cell death in aging PS/APP mice and identify the cross talk between autophagy and apoptosis, which influences neuronal survival in AD-related neurodegeneration.  相似文献   

7.
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor participates in the trafficking of lysosomal enzymes from the trans-Golgi network or the cell surface to lysosomes. In Alzheimer's disease (AD) brains, marked up-regulation of the lysosomal system in vulnerable neuronal populations has been correlated with altered metabolic functions. To establish whether IGF-II/M6P receptors and lysosomal enzymes are altered in the brain of transgenic mice harboring different familial AD mutations, we measured the levels and distribution of the receptor and lysosomal enzymes cathepsins B and D in select brain regions of transgenic mice overexpressing either mutant presenilin 1 (PS1; PS1(M146L+L286V)), amyloid precursor protein (APP; APP(KM670/671NL+V717F)) or APP+PS1 (APP(KM670/671NL+V717F)+PS1(M146L+L286V)) transgenes. Our results revealed that levels and expression of the IGF-II/M6P receptor and lysosomal enzymes are increased in the hippocampus and frontal cortex of APP and APP+PS1, but not in PS1, transgenic mouse brains compared with wild-type controls. The changes were more prominent in APP+PS1 than in APP single transgenic mice. Additionally, all beta-amyloid-containing neuritic plaques in the hippocampal and cortical regions of APP and APP+PS1 transgenic mice were immunopositive for both lysosomal enzymes, whereas only a subset of the plaques displayed IGF-II/M6P receptor immunoreactivity. These results suggest that up-regulation of the IGF-II/M6P receptor and lysosomal enzymes in neurons located in vulnerable regions reflects an altered functioning of the endosomal-lysosomal system which may be associated with the increased intracellular and/or extracellular A beta deposits observed in APP and APP+PS1 transgenic mouse brains.  相似文献   

8.
The hippocampus is a structurally and functionally complex brain area that plays important and diverse roles in higher brain functions, such as learning and memory, and mounting evidence indicates that different hippocampal subregions play distinctive roles. The hippocampus is also one of the first regions in the brain to suffer damage in Alzheimer's disease (AD). Synaptic dysfunction in the hippocampus, rather than neuronal loss per se, is paralleled by behavioural and functional deficits in AD. The membrane‐associated guanylate kinase (MAGUK) family of proteins, including SAP102, PSD‐95, PSD‐93 and SAP97, have long been recognized as essential components of the postsynaptic density (PSD) at excitatory synapses. Hippocampal spines are the predominant synaptic transmission sites of excitatory glutamatergic synapses. During postnatal brain development, individual MAGUK members show distinct expression patterns. Although SAP102 has been confirmed as the dominant scaffold protein in neonatal synapses, its expression profiles in adult and ageing rodent hippocampi are discrepant. Furthermore, in AD brains, significantly reduced SAP102 protein levels have been found, suggesting that SAP102 may be related to AD progression; however, the precise mechanism underlying this result remains unclear. Herein, we observed distinct SAP102 expression profiles in the hippocampal CA1, CA3 and DG subregions of rats and APPswe/PS1dE9 (APP/PS1) mice at various ages using immunofluorescence. In Wistar rats, SAP102 was not only highly expressed in the hippocampal subregions of neonatal rats but also maintained relatively high expression levels in adult hippocampi and displayed no obvious decreases in the CA1 and DG subregions of aged rats. Surprisingly, we observed abnormally high SAP102 expression levels in the CA1 stratum moleculare and CA3 stratum polymorphum subregions of 2‐month‐old APP/PS1 mice, but low SAP102 levels in the DG and CA3 subregions of 7‐month‐old APP/PS1 mice, reflecting the subregion‐specific reactivity and vulnerability of AD mouse models in different disease stages. Our findings provide fundamental data to support the functional differences of SAP102 in different hippocampal subregions during postnatal periods and may serve as the basis for additional functional studies on SAP102 in normal physiological conditions and different stages of AD.  相似文献   

9.
Curcumin is a natural product with several anti-Alzheimer's disease (AD) neuroprotective properties. This study aimed to investigate the effects of curcumin on memory deficits, lactate content, and monocarboxylate transporter 2 (MCT2) in APP/PS1 mouse model of AD. APP/PS1 transgenic mice and wild-type (WT) C57BL/6J mice were used in the present study. Spatial learning and memory of the mice was detected using Morris water-maze test. Cerebral cortex and hippocampus lactate contents were detected using lactate assay. MCT2 expression in the cerebral cortex and hippocampus was examined by immunohistochemistry and Western blotting. Results showed that spatial learning and memory deficits were improved in curcumin-treated APP/PS1 mouse group compared with those in APP/PS1 mice group. Brain lactate content and MCT2 protein level were increased in curcumin-treated APP/PS1 mice than in APP/PS1 mice. In summary, our findings indicate that curcumin could ameliorate memory impairments in APP/PS1 mouse model of AD. This phenomenon may be at least partially due to its improving effect on the lactate content and MCT2 protein expression in the brain. Anat Rec, 302:332–338, 2019. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
Alzheimer's disease (AD) is the most common type of dementia afflicting the elderly. In addition to the presence of cortical senile plaques and neurofibrillary tangles, AD is characterized at autopsy by extensive degeneration of brainstem locus coeruleus (LC) neurons that provide noradrenergic innervation to cortical neuropil, together with relative stability of dopaminergic neuron number in substantia nigra (SN) and ventral tegmental area (VTA). The present study used design-based stereological methods to assess catecholaminergic neuronal loss in brains of double transgenic female mice that co-express two human mutations associated with familial AD, amyloid precursor protein (APPswe) and presenilin-1 (PS1ΔE9). Mice were analyzed at two age groups, 3–6 months and 16–23 months, when deposition of AD-type β-amyloid (Aβ) plaques occurs in cortical brain regions. Blocks of brain tissue containing the noradrenergic LC nucleus and two nuclei of dopaminergic neurons, the SN and VTA, were sectioned and sampled in a systematic-random manner and immunostained for tyrosine hydroxylase (TH), a specific marker for catecholaminergic neurons. Using the optical fractionator method we found a 24% reduction in the total number of TH-positive neurons in LC with no changes in SN-VTA of aged dtg APP/PS1 mice compared with non-transgenic controls. No significant differences were observed in numbers of TH-positive neurons in LC or SN-VTA in brains of young female dtg APP/PS1 mice compared to their age-matched controls. The findings of selective neurodegeneration of LC neurons in the brains of aged female dtg APP/PS1 mice mimic the neuropathology in the brains of AD patients at autopsy. These findings support the use of murine models of Aβ deposition to develop novel strategies for the therapeutic management of patients afflicted with AD.  相似文献   

11.
目的:定量研究APP/PS1转基因小鼠海马内少突胶质细胞(OLG)的改变,探讨β-淀粉样蛋白(Aβ)对OLG的影响。方法:随机选取10月龄雄性APP/PS1转基因小鼠(AD组)和10月龄同窝生雄性野生型小鼠(WT组)各13只,运用Morris水迷宫检测各组小鼠的空间学习和记忆能力;运用体视学方法计数各组小鼠海马CA1、CA2-3和齿状回(DG)内Olig2+细胞和2',3'-环核苷酸3'-磷酸二酯酶(CNPase)阳性细胞总数;体外培养小鼠少突胶质前体细胞(MOPC),给予Aβ1-42,运用real time RT-PCR和Western Blot检测OLG相关蛋白的表达水平和含量。结果:AD小鼠逃避潜伏期显著性长于WT小鼠(P<0.05),穿台次数显著性少于WT小鼠(P<0.05);AD小鼠海马各区Olig2+细胞总数均较WT小鼠显著性增加(P<0.05),且与逃避潜伏期呈正相关,与穿台次数呈负相关,而各区CNPase+细胞总数均较WT小鼠显著性减少(P<0.05),且与逃避潜伏期呈负相关;Aβ1-42干预后MOPC的NG2及CNPase的mRNA水平显著性降低(P<0.05),Olig2含量也显著性降低(P<0.05)。结论:APP/PS1转基因小鼠海马内存在成熟OLG丢失、少突胶质细胞系异常增殖;Aβ可能引起OLG损伤和发育异常;保护海马成熟OLG以及调控OLG发育可能是防治AD的有效策略。  相似文献   

12.
Alzheimer’s disease (AD) is a neurodegenerative disorder, characterized by amyloid plaque accumulation, intracellular tangles and neuronal loss in selective brain regions. The frontal cortex, important for executive functioning, is one of the regions that are affected. Here, we investigated the neurodegenerative effects of mutant human amyloid precursor protein (APP) and presenilin 1 (PS1) on frontal cortex neurons in APP/PS1KI mice, a transgenic mouse model of AD, expressing two mutations in the human APP, as well as two human PS1 mutations knocked-in into the mouse PS1 gene in a homozygous (ho) manner. Although the hippocampus is significantly affected in these mice, very little is known about the effects of these mutations on selective neuronal populations and plaque load in the frontal cortex. In this study, cytoarchitectural changes were characterized using high precision design-based stereology to evaluate plaque load, total neuron numbers, as well as total numbers of parvalbumin- (PV) and calretinin- (CR) immunoreactive (ir) neurons in the frontal cortex of 2- and 10-month-old APP/PS1KI mice. The frontal cortex was divided into two subfields: layers II–IV and layers V–VI, the latter of which showed substantially more extracellular amyloid-beta aggregates. We found a 34% neuron loss in layers V–VI in the frontal cortex of 10-month-old APP/PS1KI mice compared to 2-month-old, while there was no change in PV- and CR-ir neurons in these mice. In addition, the plaque load in layers V–VI of 10-month-old APP/PS1KI mice was only 11% and did not fully account for the extent of neuronal loss. Interestingly, an increase was found in the total number of PV-ir neurons in all frontal cortical layers of single transgenic APP mice and in layers II–IV of single transgenic PS1ho mice between 2 and 10 months of age. In conclusion, the APP/PS1KI mice provide novel insights into the regional selective vulnerability in the frontal cortex during AD that, together with previous findings in the hippocampus, are remarkably similar to the human situation.  相似文献   

13.
Dietary influences on Alzheimer disease (AD) are gaining recognition. Because many aging processes are attenuated in laboratory mammals by caloric restriction (CR), we examined the effects of short-term CR in two AD-transgenic mice, APP(swe/ind) (J20) and APP(swe) + PS1(M146L) (APP + PS1). CR substantially decreased the accumulation of Abeta-plaques in both lines: by 40% in APP(swe/ind) (CR, 6 weeks), and by 55% in APP + PS1 (CR, 14 weeks). CR also decreased astrocytic activation (GFAP immunoreactivity). These influences of CR on AD-transgenic mice are consistent with epidemiological reports that show that high caloric diets associate with the risk of AD, and suggest that dietary interventions in adult life might slow disease progression.  相似文献   

14.
Neuron and synapse loss are important features of the neuropathology of Alzheimer's disease (AD). Recently, we observed substantial age-related hippocampal neuron loss in APP751SL/PS1M146L transgenic mice but not in PS1M146L mice. Here, we investigated APP751SL mice, PS1M146L mice, and APP751SL/PS1M146L mice for age-related alterations in synaptic integrity within hippocampal stratum moleculare of the dentate gyrus (SM), stratum lucidum of area CA3 (SL), and stratum radiatum of area CA1-2 (SR) by analyzing densities and numbers of synaptophysin-immunoreactive presynaptic boutons (SIPBs). Wild-type mice, APP751SL mice and PS1M146L mice showed similar amounts of age-related SIPB loss within SM, and no SIPB loss within SL. Both APP751SL mice and PS1M146L mice showed age-related SIPB loss within SR. Importantly, APP751SL/PS1M146L) mice displayed the severest age-related SIPB loss within SM, SL, and SR, even in regions free of extracellular Abeta deposits. Together, these mouse models offer a unique framework to study the impact of several molecular and cellular events caused by mutant APP and/or mutant PS1 on age-related alterations in synaptic integrity. The observation of age-related SIPB loss within SR of PS1M146L mice supports a role of mutant PS1 in neurodegeneration apart from its contribution to alterations in Abeta generation.  相似文献   

15.
目的 观察表没食子儿茶素没食子酸酯 (EGCG) 对淀粉样前体蛋白(APP)/早老素1(PS1)双转基因小鼠空间学习记忆能力、海马 CA1 区突触超微结构和神经细胞黏附分子表达的影响。方法 选用 8 周龄雄性APP/PS1双转基因小鼠随机分为模型组、EGCG组、盐酸多奈哌齐组,另以同窝阴性小鼠设立正常组,每组 12 只。连续灌胃给药 6 个月后进行相关指标检测。采用 Morris 水迷宫实验观测APP/PS1转基因小鼠空间学习记忆能力;透射电子显微镜观察小鼠海马CA1区突触超微结构; 分别采用免疫荧光法及免疫印迹法检测APP/PS1转基因小鼠海马CA1区神经细胞黏附分子(NCAM)和唾液酸转移酶(ST8Sia Ⅱ)的蛋白表达。结果 与正常组比较,模型组逃避潜伏期延长;与模型组比较,EGCG组、盐酸多奈哌齐组小鼠逃避潜伏期下降 (P<0.05)。电子显微镜结果显示,与模型组比较,EGCG组和盐酸多奈哌齐组突触界面曲率变化不明显;突触间隙宽度变窄,突触后致密物厚度增加(P<0.05)。免疫荧光结果显示,海马CA1区NCAM、ST8Sia Ⅱ蛋白表达在神经元的胞体内,EGCG组和盐酸多奈哌齐组NCAM、ST8Sia Ⅱ蛋白表达明显增加 (P<0.05),免疫印迹实验发现其含量亦呈高表达水平(P<0.05)。结论 EGCG对 APP/PS1 转基因小鼠的空间学习记忆功能具有改善作用,其机制可能与影响小鼠海马突触结构,提高小鼠海马神经黏附分子表达有关。  相似文献   

16.
目的:观察亚甲蓝对APP/PS1转基因小鼠学习记忆及胶质纤维酸性蛋白(Glial fibrillary acidic pro-tein,GFAP)在海马结构表达变化的影响。方法:20只3月龄APP/PS1小鼠,随机分2组,每组10只,对照组:自由饮水;治疗组:根据小鼠饮水量将亚甲蓝加入日常饮水中(25 mg/kg/d)连用4个月至7月龄。水迷宫测试观察其行为学的改变,免疫组化、Western Blot和TUNEL染色法观察GFAP在海马结构的表达及神经元的凋亡情况。结果:水迷宫测试结果显示亚甲蓝喂养组APP/PS1转基因小鼠第2~4 d的平均潜伏期显著低于对照组小鼠的潜伏期,说明治疗组与对照组相比在7个月时出现明显差异(P<0.05);免疫组化和Western结果显示治疗组海马结构内的GFAP在APP/PS1转基因小鼠的表达下调(P<0.05)。TUNEL染色法显示治疗组海马CA1、CA3区和齿状回TUNEL阳性细胞数较对照组明显减少(P<0.05)。结论:亚甲蓝能够下调APP/PS1小鼠海马结构内GFAP蛋白的表达,并通过抑制海马结构神经元的凋亡,提高APP/PS1小鼠的认知能力。  相似文献   

17.
Hippocampal atrophy and neuron loss are commonly found in Alzheimer’s disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APPSL/PS1 KI mice, as well as in APPSL mice and PS1 KI mice. We found a loss of PV-ir neurons (40–50%) in the CA1-2, and a loss of CR-ir neurons (37–52%) in the dentate gyrus and hilus of APPSL/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus.  相似文献   

18.
The amyloid precursor protein (APP) is the source of beta-amyloid, a pivotal peptide in the pathogenesis of Alzheimer's disease (AD). This study examines the possible effect of APP transgene expression on neuronal size by measuring the volumes of cortical neurons (microm(3)) in transgenic mouse models with familial AD Swedish mutation (APPswe), with or without mutated presenilin1 (PS1dE9), as well as in mice carrying wild-type APP (APPwt). Overexpression of APPswe and APPwt protein, but not of PS1dE9 alone, resulted in a greater percentage of medium-sized neurons and a proportionate decrease in the percentage of small-sized neurons. Our observations indicate that the overexpression of mutant (APPswe) or wild-type APP in transgenic mice is necessary and sufficient for hypertrophy of cortical neurons. This is highly suggestive of a neurotrophic effect and also raises the possibility that the lack of neuronal loss in transgenic mouse models of AD may be attributed to overexpression of APP.  相似文献   

19.
The depletion of neuronal calcium binding proteins deprives neurons of the capacity to buffer high levels of intracellular Ca(2+) and this leaves them vulnerable to pathological processes, such as those present in Alzheimer's disease (AD). The aim of the present study was to investigate the expression of the calcium binding proteins, calbindin-D28K, calretinin and parvalbumin in the dentate gyrus (DG) of amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mice and their non-Tg littermates, as well as the relation with the deposition of human amyloid beta (Abeta). We measured the expression of these three proteins at seven different rostro-caudal levels, and in the molecular, granular and polymorphic layers of the DG. We found that, except in the most caudal part of the DG, there is a substantial loss of calbindin-D28K immunoreactivity in all three layers of the DG in APP/PS1 mice compared with the non-Tg mice. Significant loss of calretinin immunoreactivity is present in most of the polymorphic layer of the DG of APP/PS1 mice compared with the non-Tg mice, as well as in the rostral and intermediate part of the inner molecular layer. Compared with the non-Tg mice parvalbumin immunoreactivity is significantly reduced throughout the whole polymorphic layer as well as in the rostral and intermediate part of the granular layer of DG in APP/PS1 mice. The relatively preservation of calbindin immunoreactivity in the caudal part of molecular and granular layers as well as calretinin immunoreactivity in the caudal part of polymorphic layer of the DG is likely related to the lower Abeta expression in those parts of DG. The present data suggest an involvement of calcium-dependent pathways in the pathogenesis of AD and indicate that there exists a subfield and layer-specific decrease in immunoreactivity which is related to the type of calcium-binding protein in APP/PS1 mice. Moreover, it seems that APP expression affects more the calbindin expression then parvalbumin and calretinin expression in the DG of APP/PS1 Tg mice.  相似文献   

20.
《Neurobiology of aging》2014,35(12):2713-2725
Hyperactivity and its compensatory mechanisms may causally contribute to synaptic and cognitive deficits in Alzheimer's disease (AD). Blocking the overexcitation of the neural network, with levetiracetam (LEV), a sodium channel blocker applied in the treatment of epilepsy, prevented synaptic and cognitive deficits in human amyloid precursor protein (APP) transgenic mice. This study has brought the potential use of antiepileptic drugs (AEDs) in AD therapy. We showed that the chronic treatment with lamotrigine (LTG), a broad-spectrum AED, suppressed abnormal spike activity, prevented the loss of spines, synaptophysin immunoreactivity, and neurons, and thus attenuated the deficits in synaptic plasticity and learning and memory in APP and presenilin 1 (PS1) mice, which express human mutant APP and PS1. In contrast with LEV, which failed to reduce the generation of amyloid β, the chronic LTG treatment reduced the cleavage of APP by β-secretase and thus the numbers and the size of amyloid plaques in the brains of APP and PS1 mice. Moreover, the levels of brain-derived neurotrophic growth factor (BDNF) and nerve growth factor (NGF) were enhanced in the brains of APP and PS1 mice by the chronic LTG treatment. Therefore, these observations demonstrate that LTG attenuates AD pathology through multiple mechanisms, including modulation of abnormal network activity, reduction of the generation of amyloid beta and upregulation of BDNF and NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号