首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ethyl 7-aryl-2-benzyhhiopyrazolo [ 1,5-a ] pyrimidine-3-carboxylates (3a-3f) were conveniently synthesized through the reactions of enaminones with 5-amino-3-benzyhhio4-ethoxycarbonyl-1 H-pyrazole in good yields and high regioselectivity. The structures of the new compounds were fully characterized by spectroscopic measurmehts, elemental analysis and X-ray diffraction analysis. A plausible reaction mechanism for the formation of the title compounds was also presented.  相似文献   

2.
TU  Shu-Jiang GAO  Yuan 等 《中国化学》2002,20(7):703-706
In the reactions of α-cyanocinnamonitrile or β-cyano-β-carbothoxy styrene with 5,5-dimethyl-1,3-cyclohexanedione in the presence of ammonium acetate under microwave irradiation without solvent,the 2-amino-5,6,7,8-tetrahydro-5-oxo-4-aryl-7,7-dimethyl-4H-benzo-[b]-pyran derivatives were obtained.However,in the reactions of arylidenecyanoacetamide with 5,5-dimethyl-1,3-cyclohexanedione under the same reaction conditions,the acridine derivatives were obtained.The structures of the products were determined by single crystal X-ray diffraction analysis.  相似文献   

3.
A novel class of fulgimide, (Z)-4-oxazolylfulgimide ((Z)-1-benzyl-4-isopropylidene-3-[1-(2-aryl-5-methyloxazolyl)ethylidene]tetrahydropyrrole-2,5-dione), was synthesized by the reaction of (Z)-4-oxazolyl fulgide (4-isopropylidene-3-[1-(2-aryl-5-methyloxazolyl) ethylidene]tetrahydrofuran-2,5-dione) with benzyl amine. Photochromic property of (Z)-4-oxazolylfulgimide was studied. Compared with (Z)-4-oxazolylfulgide, the absorption maximum of the colored form of (Z)-4-oxazolylfulgimide is bathochromic-shifted. Substituents on the aryl ring affect the absorption maximum of the open form and the colored form of (Z)-4-oxazolylfulgimide.  相似文献   

4.
The polystyrenylphosphonous acid (PSPA) of low polymerization degress was prepared with one step reaction. The reaction mechanism was changed with different initiators. For the reaction with AIBN or BPO as the initiator, therer are 2 or 3 serives of radical reaction chains and 5 or 9 series of polystyrenyl products. The main products are PSPA without or with the fragment of the initiator H[CH(C6H5)-CH2]n-PO2H2 and C6H5CO2-[CH2CH(C6H5)]n-PO2H2 respectively.  相似文献   

5.
The aroylhydrazides were prepared by esterification and hydrazinolysis of corresponding aromatic carboxylic acids.The reaction of aroylhydrazides with CS2/KOH in absolute ethanol gave potassium aroyldithiocarbazates and then hydrazinolysis of potassium aroyldithiocarbazates with hydrazine hydrate afforded 3-aryl-4-amino-5-mercapto-1,2,4-triazoles(1a~1g).New seven compounds of bis[(3-aryl)-s-triazolo[3,4-b]-[1,3,4]thiadiazole derivatives(2a~2g) were synthesized in high yields by cyclization of nonanedioic ac...  相似文献   

6.
Substituted 3H-indole modified β-cyclodextrin (β-CD) was prepared by the reaction of 6-deoxy-6-[(2-aminoethyl)amino]-β-CD (CDen) with 2-[(p-amino)phenyl]-3, 3-dimethyl-5-car-boxyl-3H-indole (substituted 3H-indole) in the presence of dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole (HOBt). The product has been characterized by means of elementalanalysis, MS and ^1H NMR.  相似文献   

7.
A series of novel imidazo[1,2-b]isoxazoles 3 and their Mannich bases 4–6 were synthesized via convenient reactions. The reaction of 3-aminoisoxazole 1 with substituted phenacyl bromides 2 in dry ethanol afforded the corresponding 6-methyl-3-aryl imidazo[1,2-b]isoxazoles 3 in good yields.Compounds 3 on treatment with 37% formaline and secondary amines furnished the corresponding novel Mannich bases viz., 6-methyl-3-aryl-2-(morpholine/pyrrolidin-1-yl/piperidin-1-yl)-methyl-imidazo[1,2-b]isoxazoles 4–6.  相似文献   

8.
Series of azobenzene-bridged pillar[5]arene-based [3]rotaxanes with different alkyl chain length of guest molecules were constructed by threading-endcapping method with alkylenetriazole as axile and tetrahydrochromene as endcapping group.The encapsulation of pillar[5]arenes were proved by highresolution mass,1 H NMR and NOESY spectra.The photo-responsive property were examined by irradiation of the synthesized [3]rotaxanes with 365 nm and blue light LED,which caused trans to cis and cis to trans isomerization,respectively.Irradiation of corresponding model guest compounds without pillar[5]arene encapsulation resulted in near completely trans to cis and cis to trans isomerization,indicating the existence of pillar[5]arenes is the determining factor for the comprised photo isomerization efficiency.  相似文献   

9.
1,6-Dihydro-3-hydrozinocarbonyl-6-pyridazinone (compound 2) were prepared from α-ketoglutaric acid and hydrazine hydrate. A series of N-aryl-2-(1‘,6‘-dihydro-6‘-pyridazinone-3‘-carbonyl) thiosemicarbazides 3a-3f were synthesized from the reaction of aryl isothiocyanates with compound 2. The terminal compounds 1,3, 4-thiadiazole, 1,3,4-oxadiazole and 1,2, 4-triazol-5-thione derivatives were cyclized from compounds 3a-3f. Their structures were confirmed by IR,^1H NMR, MS and elemental analyses.  相似文献   

10.
A series of 8,9-dihydro-2-(2-oxo-2H-chromen-3-yl)-5-aryl-3/f-chromeno[2,3-(flpyrimidine-4,6(5ff,7//)-diones(5a-j) have been synthesized by the reaction of 2-amino-5,6,7,8-tetrahydro-5-oxo-4-aryl-4#-chromene-3-carbonitrile(4a-j) with couma-rin -3-catboxylic acid under neat conditions employing Br0nsted acidic ionic liquid(4-sulfobutyl)tris(4-sulfophenyl)phosphonium hydrogen sulfate as catalyst.Structures of all the compounds were established on the basis of analytical and spectroscopic data.All the compounds were evaluated for their in vitro antimicrobial activity against different bacterial and fungal strains.  相似文献   

11.
Reaction of electron deficient cyclopropane derivatives cis‐1‐methoxycarbonyl‐2‐aryl‐6, 6‐dimethyl‐5, 7‐dioxa‐spiro‐[2,5]‐4,8‐octadiones (1a‐d) (X = CH3, H, Cl, NO2) with anilines (2a‐e) (Y = p‐CH3, H, p‐Br, p‐NO2, o‐CH3) at room temperature gives N‐aryl‐trans, trans‐α‐carboxyl‐β‐methoxycarbonyl‐γ‐aryl‐γ‐butyrolactams (3a‐p) in high yields with high stereoselectivity. For example, 1a (X= CH3) reacts with ammonia 4 or benzyl amine 5 at room temperature to give inner ammonium salt 6 or 7 in the yield of 83% or 97% respectively. The reaction mechanisms for formation of the products are proposed.  相似文献   

12.
Fan Yang  Jing Sun  Chaoguo Yan 《中国化学》2015,33(12):1371-1379
The three‐component reaction of thiazole (benzothiazole), dialkyl but‐2‐ynedioate, and isatinylidene malononitriles in toluene at 110–120°C in a sealed tube afforded a mixture of cis/trans‐isomers of functionalized diastereoisomeric spiro[indoline‐3,7′‐thiazolo[3,2‐a]pyridines] and spiro[benzo[4,5]thiazolo[3,2‐a]pyridine‐3,3′‐indolines] in good yields. Both cis‐isomers and trans‐isomers were successfully separated out and fully characterized with spectroscopy and single crystal determination. Under similar conditions, the three‐component reaction containing 2‐(1,3‐dioxo‐1H‐inden‐2(3H)‐ylidene)malononitrile resulted in spiro[indene‐2,7′‐thiazolo[3,2‐a]pyridine] derivatives.  相似文献   

13.
The osmium complexes trans‐[OsCl2(dppf)(diamine)] (dppf: 1,1′‐bis(diphenylphosphino)ferrocene; diamine: ethylenediamine in 3 , propylenediamine in 4 ) were prepared by the reaction of [OsCl2(PPh3)3] ( 1 ) with the ferrocenyl diphosphane, dppf and the corresponding diamine in dichloromethane. The reaction of derivative 3 with NaOCH2CF3 in toluene afforded the alkoxide cis‐[Os(OCH2CF3)2(dppf)(ethylenediamine)] ( 5 ). The novel precursor [Os2Cl4(P(m‐tolyl)3)5] ( 2 ) allows the synthesis of the chiral complexes trans‐[OsCl2(diphosphane)(1,2‐diamine)] ( 6 – 9 ; diphosphane: (R)‐[6,6′‐dimethoxy(1,1′‐biphenyl)‐2,2′‐diyl]bis[1,1‐bis(3,5‐dimethylphenyl)phosphane] (xylMeObiphep) or (R)‐(1,1′‐binaphthalene)‐2,2′‐diylbis[1,1‐bis(3,5‐dimethylphenyl)phosphane] (xylbinap); diamine=(R,R)‐1,2‐diphenylethylenediamine (dpen) or (R,R)‐1,2‐diaminocyclohexane (dach)), obtained by the treatment of 2 with the diphosphane and the 1,2‐diamine in toluene at reflux temperature. Compounds 3 – 5 in ethanol and in the presence of NaOEt catalyze the reduction of methyl aryl, dialkyl, and diaryl ketones and aldehydes with H2 at low pressure (5 atm), with substrate/catalyst (S/C) ratios of 10 000–200 000 and achieving turnover frequencies (TOFs) of up to 3.0×105 h?1 at 70 °C. By employment of the chiral compounds 6 – 9 , different ketones, including alkyl aryl, bulky tert‐butyl, and cyclic ketones, have successfully been hydrogenated with enantioselectivities up to 99 % and with S/C ratios of 5000–100 000 and TOFs of up to 4.1×104 h?1 at 60 °C.  相似文献   

14.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

15.
Treatment of arylidene malononitriles 2A – C with 1‐cyanomethylisoquinoline 1 afforded 4‐amino‐2‐arylpyrido[2,1‐a ]isoquinoline‐1,3‐dicarbonitrile derivatives 5A – C , which converted to formimidates 6A – C via reaction with triethylorthoformate. Treatment of the latter compounds with hydrazine hydrate gave the corresponding amino–imino compounds 7A – C , which underwent Dimroth rearrangement to afford 13‐aryl‐1‐hydrazinylpyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinoline‐12‐carbonitrile 8A – C . The latter reacted with aldehyde to give 9a – i . Oxidative cyclization of the latter compounds 9a – i gave [1,2,4]triazolo[4″,3″:1′,6′]‐pyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinolines 10a , d , g . Such compounds isomerized to the thermodynamically more stable isomers [1,2,4]triazolo[1″,5″:1′,6′]pyrimido[5′,4′:5,6]‐pyrido[2,1‐a ]isoquinolines 11a , d , g . Antimicrobial activities for some compounds were studied.  相似文献   

16.
Treatment of 1‐aryl‐1‐allen‐6‐enes with [PPh3AuCl]/AgSbF6 (5 mol %) in CH2Cl2 at 25 °C led to intramolecular [3+2] cycloadditions, giving cis‐fused dihydrobenzo[a]fluorene products efficiently and selectively. The reactions proceeded with initial formation of trans/cis mixtures of 2‐alkyl‐1‐isopropyl‐2‐phenyl‐1,2‐dihydronaphthalene cations B, which were convertible into the desired cis‐fused cycloadducts through the combined action of a gold catalyst and a Brønsted acid. Theoretic calculation supports the participation of the trans‐B cation as reaction intermediate. Although HOTf showed similar activity towards several 1‐aryl‐1‐allen‐6‐enes, it lacks generality for this cycloaddition reaction.  相似文献   

17.
The 5,5‐dimethylpyrazolidin‐3‐one ( 4 ), prepared from ethyl 3‐methylbut‐2‐enoate ( 3 ) and hydrazine hydrate, was treated with various substituted benzaldehydes 5a – i to give the corresponding (1Z)‐1‐(arylmethylidene)‐5,5‐dimethyl‐3‐oxopyrazolidin‐1‐ium‐2‐ide azomethine imines 6a – i . The 1,3‐dipolar cycloaddition reactions of azomethine imines 6a – h with dimethyl acetylenedicarboxylate (=dimethyl but‐2‐ynedioate; 7 ) afforded the corresponding dimethyl pyrazolo[1,2‐a]pyrazoledicarboxylates 8a – h , while by cycloaddition of 6 with methyl propiolate (=methyl prop‐2‐ynoate; 9 ), regioisomeric methyl pyrazolo[1,2‐a]pyrazolemonocarboxylates 10 and 11 were obtained. The regioselectivity of cycloadditions of azomethine imines 6a – i with methyl propiolate ( 9 ) was influenced by the substituents on the aryl residue. Thus, azomethine imines 6a – e derived from benzaldehydes 5a – e with a single substituent or without a substituent at the ortho‐positions in the aryl residue, led to mixtures of regioisomers 10a – e and 11a – e . Azomethine imines 6f – i derived from 2,6‐disubstituted benzaldehydes 5f – i gave single regioisomers 10f – i .  相似文献   

18.
The thermal reaction of 1‐substituted 2,3‐diphenylaziridines 2 with thiobenzophenone ( 6a ) and 9H‐fluorene‐9‐thione ( 6b ) led to the corresponding 1,3‐thiazolidines (Scheme 2). Whereas the cis‐disubstituted aziridines and 6a yielded only trans‐2,4,5,5‐tetraphenyl‐1,3‐thiazolidines of type 7 , the analogous reaction with 6b gave a mixture of trans‐ and cis‐2,4‐diphenyl‐1,3‐thiazolidines 7 and 8 . During chromatography on SiO2, the trans‐configured spiro[9H‐fluorene‐9,5′‐[1,3]thiazolidines] 7c and 7d isomerized to the cis‐isomers. The substituent at N(1) of the aziridine influences the reaction rate significantly, i.e., the more sterically demanding the substituent the slower the reaction. The reaction of cis‐2,3‐diphenylaziridines 2 with dimethyl azodicarboxylate ( 9 ) and dimethyl acetylenedicarboxylate ( 11 ) gave the trans‐cycloadducts 10 and 12 , respectively (Schemes 3 and 4). In the latter case, a partial dehydrogenation led to the corresponding pyrroles. Two stereoisomeric cycloadducts, 15 and 16 , with a trans‐relationship of the Ph groups were obtained from the reaction with dimethyl fumarate ( 14 ; Scheme 5); with dimethyl maleate ( 17 ), the expected cycloadduct 18 together with the 2,3‐dihydropyrrole 19 was obtained (Scheme 6). The structures of the cycloadducts 7b, 8a, 15b , and 16b were established by X‐ray crystallography.  相似文献   

19.
The reaction of 4‐amino‐5,5‐dimethyl‐5H‐1,2‐oxathiole 2,2‐dioxide ( 1 ) with 2‐(arylidene)malononitriles 2 in ethanol, at reflux, using piperidine as catalyst, afforded 5‐amino‐3,3‐dimethyl‐7‐aryl‐3H‐[1,2]oxathiolo[4,3‐b]pyridine‐6‐carbonitrile 1,1‐dioxides ( 3 ) in moderate chemical yields.  相似文献   

20.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号