首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
BaTiO3–polymer composite layers have been produced by the spin-on technique (thickness 3–10 μm). The dielectric permittivity of the layers at room temperature can be tuned from 2.8 to approximately 33 by varying the ceramic filling from 0 to 60% by volume. The dielectric properties of the films are almost insensitive to temperature variations in the range 20–180 °C. Free-standing composite layers with ceramic content ≤50% are flexible without noticeable change of permittivity after repeated mechanical bending. Received: 22 November 2001 / Accepted: 24 November 2001 / Published online: 23 January 2002  相似文献   

2.
We deposited amorphous thin films of boron carbide by pulsed laser deposition using a B4C target at room temperature. As the laser fluence increased from 1 to 3 J/cm2, the number of 0.25–5 μm particulates embedded in the films decreased, and the B/C atomic ratio of the films increased from 1.8 to 3.2. The arrival of melt droplets, atoms, and small molecular species depending on laser fluence appeared to be involved in the film formation. In addition, with increasing fluence the nanoindentation hardness of the films increased from 14 to 32 GPa. We believe that the dominant factor in the observed increase in the films’ hardness is the arrival of highly energetic ions and atoms that results in the formation of denser films. Received: 23 March 2001 / Accepted: 1 July 2001 / Published online: 2 October 2001  相似文献   

3.
Star-shaped oligofluorene consists of highly-fluorescent macromolecules of considerable interest for organic electronics. Here, we demonstrate controlled micro-patterning of these organic nanostructured molecules by blending them with custom-synthesized photo-curable aliphatic polymer matrices to facilitate solventless inkjet printing. The printed microstructures are spherical with minimum dimensions of 12 μm diameter and 1 μm height when using a cartridge delivering ∼1 pL droplets. We evaluate the physical characteristics of the printed structures. Photoluminescence studies indicate that the blend materials possess similar fluorescence properties to neat materials in solid films or toluene solution. The fluorescence lifetime consists of two components, respectively 0.68±0.01 ns (τ 1) and 1.23±0.12 ns (τ 2). This work demonstrates that inkjet printing of such blends provides an attractive method of handling fluorescent nano-scaled molecules for photonic and optoelectronic applications.  相似文献   

4.
This article describes fabrication of Ag micropatterns on a flexible polyimide (PI) film by laser direct writing using an Ag nanoparticle-dispersed film as a precursor. Ag micropatterns are characterized by optical microscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), surface profilometry, and resistivity measurements. The line width of Ag micropatterns can be effectively controlled by altering the experimental parameters of laser direct writing especially laser intensity, objective lens, and laser beam scanning speed etc. Using an objective lens of 100× and laser intensity of 170.50 kW/cm2, Ag micropatterns with a line width of about 6 μm have been achieved. The Ag micropatterns show strong adhesion to polyimide surface as evaluated by Scotch-tape test. The resistivity of the Ag micropatterns is determined to be 4.1 × 10−6 Ω cm using two-point probe method. This value is comparable with the resistivity of bulk Ag (1.6 × 10−6 Ω cm).  相似文献   

5.
GaN nanotweezers     
A new form of GaN nanomaterial (nanotweezers) has been obtained by chemical vapor deposition on an etched cubic MgO (100) plane. The nanotweezers consist of a bottom rod and two arms. The bottom rods have diameters of about 100–150 nm and lengths of about 200–500 nm, on which two arms grow out. The bottoms of the arms are about 40–70 nm and the tops are about 15–30 nm in diameter, and 0.8–1.5 μm in length. X-ray and electron diffractions indicate the nanotweezers are zinc blende gallium nitride. We infer that the fabrication of the GaN nanotweezers is associated with small convex hillocks on the surface of the etched cubic MgO (100) single-crystal substrates and that the nanotweezers grow by a growth mechanism that is similar to vapor-phase heteroepitaxy. Received: 23 April 2002 / Accepted: 25 April 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +86-10/8264-9531, E-mail: xlchen@aphy.iphy.ac.cn  相似文献   

6.
Three-layered ZnO/Ag–Ti/ZnO structures were prepared using both the sol-gel technique and DC magnetron sputtering. This study focuses on the electrical and optical properties of the ZnO/Ag–Ti/ZnO multilayers with various thicknesses of the Ag–Ti layer. The ZnO thin film prepared by the sol–gel method was dried at 300°C for 3 minutes, and a fixed thickness of 20 nm was obtained. The thickness of the Ag–Ti thin film was controlled by varying the sputtering time. The Ag–Ti layer substantially reduced the electrical resistivity of the sol–gel-sprayed ZnO thin films. The sheet resistance of the Ag–Ti layer decreased dramatically and then became steady beyond a sputtering time of 60 s. The sputtering time of Ag–Ti thin film deposition was determined to be 60 s, taking into account the optical transmittance. Consequently, the transmittance of the ZnO/Ag–Ti/ZnO multilayer films was 71% at 550 nm and 60% at 350 nm. The sheet resistance was 4.2 Ω/sq.  相似文献   

7.
3 crystals are measured in the transparency region (with the accuracy ±0.0002) and for the upper phonon polariton branch (with the accuracy ±0.003–±0.05), from 0.44 μm up to 10.5 μm. The method of spontaneous parametric light scattering is used for measurement of the ordinary refractive index dispersion in the mid-infrared region and for determination of the domain grating period d=5.6±0.2 μm in the periodically-poled crystal. Received: 29 January 1997/Revised version: 10 July 1997  相似文献   

8.
The dissolution process of sparingly soluble CaCO3 microparticles and how the fractal surface dimension of the particles changes during dissolution is analyzed. The particles and the dissolution process are studied using scanning electron microscopy, X-ray diffraction, nitrogen adsorption, laser diffraction and conductance measurements. Ball milling of the particles is shown to maintain the particle crystallinity, and to introduce an increased fractal surface dimension in the 1–10 μm size range. Dissolution is found to increase the surface dimension of initially smooth particles and to maintain the fractal surface roughness of milled particles. The dissolution process increases the relative number of small particles (50 nm–1 μm) whereas the larger ones decrease in size. The solubility of the milled fractal particles was ∼1.8 times higher than that for the initially smooth ones. The presented findings show that developing methods for increasing the fractal surface roughness of particles should be of interest for improving the solubility of poorly soluble drug candidates.  相似文献   

9.
Optical crosstalk from a 1.3 μm laser to a 1.55 μm photodiode on a single InP substrate, and its suppression within 1.3 μm/1.5 μm Y-junction transceiver OEICs, has been analyzed experimentally. The results indicate that the optical crosstalk suppression is limited by the accumulated light in the OEIC substrate coming mainly from the spontaneous emission of the integrated laser and from stray light at the laser–waveguide butt joint interface. For OEICs, integrating lasers and photodetectors, the achievable optical intra-chip crosstalk at present will be in the range of 30–40 dB at the required small die dimensions. Received: 16 May 2001 / / Published online: 23 October 2001  相似文献   

10.
We report on germania/organically modified silane (ormosil) hybrid materials produced by the sol–gel technique for photonic applications. Acid-catalyzed solutions of γ-glycidoxypropyltrimethoxysilane mixed with germanium isopropoxide have been used as precursors for the hybrid materials. Planar waveguide films with a thickness of about 2 μm have been prepared by a single spin-coating process and low-temperature heat treatment from these high germanium content hybrid materials. Atomic force microscopy, thermal gravimetric analysis, UV–visible spectroscopy, and Fourier-transform infrared spectroscopy have been used to investigate the optical and structural properties of the films. The results have indicated that a dense, low absorption, and high transparency (in the visible range) waveguide film could be achieved at a low temperature. A strong UV-absorption region at short wavelengths ∼200 nm, accompanied by a shoulder peaked at ∼240 nm, has been noticed due to the neutral oxygen monovacancy defects. The propagation mode and loss properties of the planar waveguide films have also been investigated by using a prism-coupling technique. Received: 5 November 2002 / Revised version: 27 December 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +65-67909081, E-mail: ewxque@ntu.edu.sg  相似文献   

11.
After aging at room temperature for several months W/C multilayers (20 periods, single layer thicknesses in the nanometer range) grown on Si-(111) substrates by pulsed laser deposition (PLD) developed homogeneously wrinkled surfaces. Their structures were studied by optical microscopy, atomic force microscopy and X-ray diffractometry. Typical dimensions of debonded areas are some 100 μm in length, about 40 μm in width and 2–3 μm in height. The formation of wrinkles is accompanied by an increase in the free surface by 1–2%. Stress relaxation is considered the driving force of this phenomenon. Received: 26 July 1999 / Accepted: 29 July 1999 / Published online: 16 September 1999  相似文献   

12.
In2O3 nanowires have been successfully fabricated on a large scale from indium particles by thermal evaporation at 1030 °C. The as-synthesized products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images show that these nanowires are uniform with diameters of about 60–120 nm and lengths of about 15–25 μm. XRD and selected-area electron diffraction analysis together indicate that these In2O3 nanowires crystallize in a cubic structure of the bixbyite Mn2O3 (I) type (also called the C-type rare-earth oxide structure). The growth mechanism of these nanowires is also discussed. Received: 29 June 2001 / Accepted: 28 September 2001 / Published online: 20 December 2001  相似文献   

13.
Present p-type ZnO films tend to exhibit high resistivity and low carrier concentration, and they revert to their natural n-type state within days after deposition. One approach to grow higher quality p-type ZnO is by codoping the ZnO during growth. This article describes recent results from the growth and characterization of Zr–N codoped p-type ZnO thin films by pulsed laser deposition (PLD) on (0001) sapphire substrates. For this work, both N-doped and Zr–N codoped p-type ZnO films were grown for comparison purposes at substrate temperatures ranging between 400 to 700 °C and N2O background pressures between 10−5 to 10−2 Torr. The carrier type and conduction were found to be very sensitive to substrate temperature and N2O deposition pressure. P-type conduction was observed for films grown at pressures between 10−3 to 10−2 Torr. The Zr–N codoped ZnO films grown at 550 °C in 1×10−3 Torr of N2O show p-type conduction behavior with a very low resistivity of 0.89 Ω-cm, a carrier concentration of 5.0×1018 cm−3, and a Hall mobility of 1.4 cm2 V−1 s−1. The structure, morphology and optical properties were also evaluated for both N-doped and Zr–N codoped ZnO films.  相似文献   

14.
Allergic-type diseases are current nowadays, and they are frequently caused by certain metals. We demonstrated that the metal objects can be covered by Teflon protective thin layers using a pulsed laser deposition procedure. An ArF excimer laser beam was focused onto the surface of pressed PTFE powder pellets; the applied fluences were 7.5–7.7 J/cm2. Teflon films were deposited on fourteen-carat gold, silver and titanium plates. The number of ablating pulses was 10000. Post-annealing of the films was carried out in atmospheric air at oven temperatures between 320 and 500 °C. The thickness of the thin layers was around 5 μm. The prepared films were granular without heat treatment or after annealing at a temperature below 340 °C. At 360 °C a crystalline, contiguous, smooth, very compact and pinhole-free thin layer was produced; a melted and re-solidified morphology was observed above 420 °C. The adhesion strength between the Teflon films and the metal substrates was determined. This could exceed 1–4 MPa depending on the treatment temperature. It was proved that the prepared Teflon layers can be suitable for prevention of contact between the human body and allergen metals and so for avoidance of metal allergy. Received: 12 June 2002 / Accepted: 13 June 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. E-mail: bhopp@physx.u-szeged.hu  相似文献   

15.
We report the device characteristics of the metal–dielectric high-reflectivity (HR) coated 1.55 μm laterally coupled distributed feedback (DFB) laser with metal surface gratings by using holographic lithography. The HR coating films are composed of Au/Ti/SiO2. It provides a variety of advantages compared to the uncoated DFB laser on the same processed wafer while there is no degradation on current–voltage characteristics. For 3 μm wide and 300 μm long HR coated DFB laser, it exhibits a maximum output power of ∼17 mW and a threshold current of 14.2 mA at 20°C under continuous-wave mode. It is clear that the threshold current and slope efficiency are improved by 36% and 96%, respectively, due to the reduction of mirror loss. The metal–dielectric HR coating on one facet of DFB laser is found to have significantly increased characteristic temperature (i.e., T 0∼88 K). Furthermore, the stable single-mode operation with an increased single-mode suppression ratio was achieved.  相似文献   

16.
Laser ablation of thin TiN films deposited on steel substrates has been studied under wide-range variation of irradiation conditions (pulsewidth, wavelength, energy density and spot size). It has been demonstrated that both picosecond (150–300 ps) and nanosecond (5–9 ns) laser pulses were suitable for controllable ablation and microstructuring of a 1-μm-thick TiN film unlike longer 150-ns pulses. The ablation rate was found to be practically independent of the wavelength (270–1078 nm) and pulsewidth (150 ps–9 ns), but it increased substantially when the size of a laser spot was reduced from 15–60 μm to 3 μm. The laser ablation technique was applied to produce microstructures in the thin TiN films consisting of microcraters with a typical size of 3–5 μm in diameter and depth less than 1 μm. Tests of lubricated sliding of the laser-structured TiN films against a steel ball showed that the durability of lubricated sliding increased by 25% as compared to that of the original TiN film. Received: 28 July 1999 / Accepted: 17 April 2000 / Published online: 20 September 2000  相似文献   

17.
High-temperature, high-power, and continuous-wave (CW) operation of quantum-cascade lasers with 35 active/injector stages at λ∼8.85 μm above room temperature is achieved without using a buried heterostructure. At this long wavelength, the use of a wider ridge waveguide in an epilayer-down bonding scheme leads to a superior performance of the laser. For a high-reflectivity-coated 21 μm×3 mm laser, the output power of 237 mW and the threshold current density of 1.44 kA/cm2 at 298 K under CW mode are obtained with a maximum wall-plug efficiency of 1.7%. Further improvements were observed by using a 4-mm-long cavity. The device exhibits 294 mW of output power at 298 K and it operates at a high temperature, even up to 358 K (85°C). The full widths at half-maximum of the laser beam in CW operation for the parallel and the perpendicular far-field patterns are 25°and 63°, respectively.  相似文献   

18.
This study sought to produce carbon nanotube (CNT) pulp out of extremely long, vertically aligned CNT arrays as raw materials. After high-speed shearing and mixing nitric acid and sulfuric acid, which served as the treatment, the researchers produced the desired pulp, which was further transformed into CNT paper by a common filtration process. The paper’s tensile strength, Young’s modulus and electrical conductivity were 7.5 MPa, 785 MPa and 1.0×104 S/m, respectively, when the temperature of the acid treatment was at 110°C. Apart from this, the researchers also improved the mechanical property of CNT paper by polymers. The CNT paper was soaked in polyethylene oxide, polyvinyl pyrrolidone, and polyvinyl alcohol (PVA) solution, eventually making the CNT/PVA film show its mechanical properties, which increased, while its electrical conductivity decreased. To diffuse the polymer into the CNT paper thoroughly, the researchers used vacuum filtration to fabricate a CNT/PVA film by penetrating PVA into the CNT paper. After a ten-hour filtration, the tensile strength and Young’s modulus of CNT/PVA film were 96.1 MPa and 6.23 GPa, respectively, which show an increase by factors of 12 and 7, respectively, although the material’s electrical conductivity was lowered to 0.16×104 S/m.  相似文献   

19.
Films of poly(vinylidene fluoride-hexafluoropropylene) copolymer [P(VDF-HFP)] were cast from a dimethylsulfoxide (DMSO)/acetone solution of Solef?85-15 P(VDF-HFP) copolymer powder grade 21508. Undrawn and uniaxially drawn cast copolymer films were investigated with respect to their piezo- and pyroelectric properties. Quasistatic charge integration was employed for the determination of the poling-field dependence of the piezoelectric d31 and pyroelectric p3 coefficients. In addition, the thermal stability of the pyroelectric effect was studied with a combination of thermally stimulated discharge (TSD) and temperature-modulation techniques. Cast copolymer films could withstand electrical poling fields of up to 400 MV/m. The maximum values of d31=30 pC/N and p3=49 μC/(m2K) for uniaxially drawn samples are similar to those found on commercial PVDF films and much higher than those on pure PVDF films cast from solution. Samples kept for 5 min at 150 °C still exhibit 30–40% of the initial pyroelectric effect [up to around 20 μC/(m2K)]. After this annealing step, no further decay of the pyroelectric coefficient could be observed during storage at 120 °C for several hours. Received: 5 July 2001 / Accepted: 27 July 2001 / Published online: 2 October 2001  相似文献   

20.
Thin films of W–B–N (10 nm) have been evaluated as diffusion barriers for Cu interconnects. The amorphous W–B–N thin films were prepared at room temperature via reactive magnetron sputtering using a W2B target at various N2/(Ar + N2) flow ratios. Cu diffusion tests were performed after in-situ deposition of 200 nm Cu. Thermal annealing of the barrier stacks was carried out in vacuum at elevated temperatures for one hour. X-ray diffraction patterns, sheet resistance measurement, cross-section transmission electron microscopy images, and energy-dispersive spectrometer scans on the samples annealed at 500°C revealed no Cu diffusion through the barrier. The results indicate that amorphous W–B–N is a promising low resistivity diffusion barrier material for copper interconnects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号