首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
Instances of gas leakage from naturally occurring CO2 reservoirs and natural gas storage sites serve as analogues for the potential release of CO2 from geologic storage sites. This paper summarizes and compares the features, events, and processes that can be identified from these analogues, which include both naturally occurring releases and those associated with industrial processes. The following conclusions are drawn: (1) carbon dioxide can accumulate beneath, and be released from, primary and secondary shallower reservoirs with capping units located at a wide range of depths; (2) many natural releases of CO2 are correlated with a specific event that triggered the release; (3) unsealed fault and fracture zones may act as conduits for CO2 flow from depth to the surface; (4) improperly constructed or abandoned wells can rapidly release large quantities of CO2; (5) the types of CO2 release at the surface vary widely between and within different leakage sites; (6) the hazard to human health was small in most cases, possibly because of implementation of post-leakage public education and monitoring programs; (7) while changes in groundwater chemistry were related to CO2 leakage, waters often remained potable. Lessons learned for risk assessment associated with geologic carbon sequestration are discussed. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day−1 were injected from a 100-m long, ~2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0–10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.  相似文献   

3.
A numerical model was developed to investigate the potential to detect fluid migration in a (homogeneous, isotropic, with constant pressure lateral boundaries) porous and permeable interval overlying an imperfect primary seal of a geologic CO2 storage formation. The seal imperfection was modeled as a single higher-permeability zone in an otherwise low-permeability seal, with the center of that zone offset from the CO2 injection well by 1400 m. Pressure response resulting from fluid migration through the high-permeability zone was detectable up to 1650 m from the centroid of that zone at the base of the monitored interval after 30 years of CO2 injection (detection limit = 0.1 MPa pressure increase); no pressure response was detectable at the top of the monitored interval at the same point in time. CO2 saturation response could be up to 774 m from the center of the high-permeability zone at the bottom of the monitored interval, and 1103 m at the top (saturation detection limit = 0.01). More than 6% of the injected CO2, by mass, migrated out of primary containment after 130 years of site performance (including 30 years of active injection) in the case where the zone of seal imperfection had a moderately high permeability (10??17 m2 or 0.01 mD). Free-phase CO2 saturation monitoring at the top of the overlying interval provides favorable spatial coverage for detecting fluid migration across the primary seal. Improved sensitivity of detection for pressure perturbation will benefit time of detection above an imperfect seal.  相似文献   

4.
Careful site characterization is critical for successful geologic storage of carbon dioxide (CO2) because of the many physical and chemical processes impacting CO2 movement and containment under field conditions. Traditional site characterization techniques such as geological mapping, geophysical imaging, well logging, core analyses, and hydraulic well testing provide the basis for judging whether or not a site is suitable for CO2 storage. However, only through the injection and monitoring of CO2 itself can the coupling between buoyancy flow, geologic heterogeneity, and history-dependent multi-phase flow effects be observed and quantified. CO2 injection and monitoring can therefore provide a valuable addition to the site-characterization process. Additionally, careful monitoring and verification of CO2 plume development during the early stages of commercial operation should be performed to assess storage potential and demonstrate permanence. The Frio brine pilot, a research project located in Dayton, Texas (USA) is used as a case study to illustrate the concept of an iterative sequence in which traditional site characterization is used to prepare for CO2 injection and then CO2 injection itself is used to further site-characterization efforts, constrain geologic storage potential, and validate understanding of geochemical and hydrological processes. At the Frio brine pilot, in addition to traditional site-characterization techniques, CO2 movement in the subsurface is monitored by sampling fluid at an observation well, running CO2-saturation-sensitive well logs periodically in both injection and observation wells, imaging with crosswell seismic in the plane between the injection and observation wells, and obtaining vertical seismic profiles to monitor the CO2 plume as it migrates beyond the immediate vicinity of the wells. Numerical modeling plays a central role in integrating geological, geophysical, and hydrological field observations.  相似文献   

5.
Geological storage of CO2 in the offshore Gippsland Basin, Australia, is being investigated by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) as a possible method for storing the very large volumes of CO2 emissions from the nearby Latrobe Valley area. A storage capacity of about 50 million tonnes of CO2 per annum for a 40-year injection period is required, which will necessitate several individual storage sites to be used both sequentially and simultaneously, but timed such that existing hydrocarbon assets will not be compromised. Detailed characterisation focussed on the Kingfish Field area as the first site to be potentially used, in the anticipation that this oil field will be depleted within the period 2015–2025. The potential injection targets are the interbedded sandstones of the Paleocene-Eocene upper Latrobe Group, regionally sealed by the Lakes Entrance Formation. The research identified several features to the offshore Gippsland Basin that make it particularly favourable for CO2 storage. These include: a complex stratigraphic architecture that provides baffles which slow vertical migration and increase residual gas trapping and dissolution; non-reactive reservoir units that have high injectivity; a thin, suitably reactive, lower permeability marginal reservoir just below the regional seal providing mineral trapping; several depleted oil fields that provide storage capacity coupled with a transient production-induced flow regime that enhances containment; and long migration pathways beneath a competent regional seal. This study has shown that the Gippsland Basin has sufficient capacity to store very large volumes of CO2. It may provide a solution to the problem of substantially reducing greenhouse gas emissions from future coal developments in the Latrobe Valley.  相似文献   

6.
Geologic storage of CO2 is expected to produce plumes of large areal extent, and some leakage may occur along fractures, fault zones, or improperly plugged pre-existing wellbores. A review of physical and chemical processes accompanying leakage suggests a potential for self-enhancement. The numerical simulations presented here confirm this expectation, but reveal self-limiting features as well. It seems unlikely that CO2 leakage could trigger a high-energy run-away discharge, a so-called “pneumatic eruption,” but present understanding is insufficient to rule out this possibility. The most promising avenue for increasing understanding of CO2 leakage behavior is the study of natural analogues.  相似文献   

7.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   

8.
The efficiency and sustainability of carbon dioxide (CO2) storage in deep geological formations crucially depends on the integrity of the overlying cap-rocks. Existing oil and gas wells, which penetrate the formations, are potential leakage pathways. This problem has been discussed in the literature, and a number of investigations using semi-analytical mathematical approaches have been carried out by other authors to quantify leakage rates. The semi-analytical results are based on a number of simplifying assumptions. Thus, it is of great interest to assess the influence of these assumptions. We use a numerical model to compare the results with those of the semi-analytical model. Then we ease the simplifying restrictions and include more complex thermodynamic processes including sub- and supercritical fluid properties of CO2 and non-isothermal as well as compositional effects. The aim is to set up problem-oriented benchmark examples that allow a comparison of different modeling approaches to the problem of CO2 leakage.  相似文献   

9.
The probability that storage of carbon dioxide (CO2) in deep geologic formations will become an important climate change mitigation strategy depends on a number of factors, namely (1) public acceptance, (2) the cost of geologic storage compared to other climate change mitigation options, and (3) the availability, capacity, and location of suitable sites. Whether or not a site is suitable will be determined by establishing that it can meet a set of performance requirements for safe and effective geologic storage. To date, no such performance requirements have been developed. Establishing effective requirements must start with an evaluation of how much CO2 might be stored and for how long the CO2 must remain underground to meet goals for controlling atmospheric CO2 concentrations. Answers to these questions provide a context for setting performance requirements for geologic storage projects.According to the results presented here, geologic storage could be an effective method to ease the transition away from a fossil-fuel based economy over the next several centuries, even if large amounts of CO2 are stored and some small fraction seeps from storage reservoirs back into the atmosphere. An annual seepage rate of 0.01% or 10-4/year would ensure the effectiveness of geologic carbon storage for any of the projected sequestration scenarios explored herein, even those with the largest amounts of storage (1,000 s of gigatonnes of carbon-GtC), and still provide some safety margin. Storing smaller amounts of carbon (10 s to 100 s of GtC) may allow for a slightly higher seepage rate on the order of 0.1% or 10-3/year. Based on both the large capacity of geologic storage formation and the likelihood of achieving leakage rates much lower than the rates estimated here, geologic storage appears to be a promising mitigation strategy.  相似文献   

10.
Predicting the fate of the injected CO2 is crucial for the safety of carbon storage operations in deep saline aquifers: especially the evolution of the position, the spreading and the quantity of the mobile CO2 plume during and after the injection has to be understood to prevent any loss of containment. Fluid flow modelling is challenging not only given the uncertainties on subsurface formation intrinsic properties (parameter uncertainty) but also on the modelling choices/assumptions for representing and numerically implementing the processes occurring when CO2 displaces the native brine (model uncertainty). Sensitivity analysis is needed to identify the group of factors which contributes the most to the uncertainties in the predictions. In this paper, we present an approach for assessing the importance of model and parameter uncertainties regarding post-injection trapping of mobile CO2. This approach includes the representation of input parameters, the choice of relevant simulation outputs, the assessment of the mobile plume evolution with a flow simulator and the importance ranking for input parameters. A variance-based sensitivity analysis is proposed, associated with the ACOSSO-like meta-modelling technique to tackle the issues linked with the computational burden posed by the use of long-running simulations and with the different types of uncertainties to be accounted for (model and parameter). The approach is tested on a potential site for CO2 storage in the Paris basin (France) representative of a project in preliminary stage of development. The approach provides physically sound outcomes despite the challenging context of the case study. In addition, these outcomes appear very helpful for prioritizing the future characterisation efforts and monitoring requirements, and for simplifying the modelling exercise.  相似文献   

11.
Documenting geographic distribution and spatial linkages between CO2 sources and potential sinks in areas with significant levels of CO2 emissions is important when considering carbon-management strategies such as geologic sequestration or enhanced oil recovery (EOR). For example, the US Gulf Coast overlies a thick succession (>6,000 m [>20,000 ft]) of highly porous and permeable sandstone formations separated by thick, regionally extensive shale aquitards. The Gulf Coast and Permian Basin also have a large potential for EOR, in which CO2 injected into suitable oil reservoirs could be followed by long-term storage of CO2 in nonproductive formations below reservoir intervals. For example, >6 billion barrels (Bbbl) of oil from 182 large reservoirs is technically recoverable in the Permian Basin as a result of miscible-CO2 flooding. The Gulf Coast also contains an additional 4.5 Bbbl of oil that could be produced by using miscible CO2. Although the CO2 pipeline infrastructure is well-developed in the Permian Basin, east Texas and the Texas Gulf Coast may have a greater long-term potential for deep, permanent storage of CO2 because of thick brine-bearing formations near both major subsurface and point sources of CO2.  相似文献   

12.
Practical geologic CO2 sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO2-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO2 releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with time shows significant correlation with distance from the CO2 well, indicating the viability of this method to monitor for CO2 leakage. The 2007 data show rapid plant vigor degradation at high CO2 levels next to the well and slight nourishment at lower, but above-background CO2 concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO2 sink–source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.  相似文献   

13.
Proper characterizations of background soil CO2 respiration rates are critical for interpreting CO2 leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO2 flux for preliminary leak detection inference. The method is illustrated using surface CO2 flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO2 flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO2 flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO2 leak detection monitoring at sequestration sites.  相似文献   

14.
Leakage of CO2 and displaced brine from geologic carbon sequestration (GCS) sites into potable groundwater or to the near-surface environment is a primary concern for safety and effectiveness of GCS. The focus of this study is on the estimation of the probability of CO2 leakage along conduits such as faults and fractures. This probability is controlled by (1) the probability that the CO2 plume encounters a conductive fault that could serve as a conduit for CO2 to leak through the sealing formation, and (2) the probability that the conductive fault(s) intersected by the CO2 plume are connected to other conductive faults in such a way that a connected flow path is formed to allow CO2 to leak to environmental resources that may be impacted by leakage. This work is designed to fit into the certification framework for geological CO2 storage, which represents vulnerable resources such as potable groundwater, health and safety, and the near-surface environment as discrete “compartments.” The method we propose for calculating the probability of the network of conduits intersecting the CO2 plume and one or more compartments includes four steps: (1) assuming that a random network of conduits follows a power-law distribution, a critical conduit density is calculated based on percolation theory; for densities sufficiently smaller than this critical density, the leakage probability is zero; (2) for systems with a conduit density around or above the critical density, we perform a Monte Carlo simulation, generating realizations of conduit networks to determine the leakage probability of the CO2 plume (P leak) for different conduit length distributions, densities and CO2 plume sizes; (3) from the results of Step 2, we construct fuzzy rules to relate P leak to system characteristics such as system size, CO2 plume size, and parameters describing conduit length distribution and uncertainty; (4) finally, we determine the CO2 leakage probability for a given system using fuzzy rules. The method can be extended to apply to brine leakage risk by using the size of the pressure perturbation above some cut-off value as the effective plume size. The proposed method provides a quick way of estimating the probability of CO2 or brine leaking into a compartment for evaluation of GCS leakage risk. In addition, the proposed method incorporates the uncertainty in the system parameters and provides the uncertainty range of the estimated probability.  相似文献   

15.
In a natural analog study of risks associated with carbon sequestration, impacts of CO2 on shallow groundwater quality have been measured in a sandstone aquifer in New Mexico, USA. Despite relatively high levels of dissolved CO2, originating from depth and producing geysering at one well, pH depression and consequent trace element mobility are relatively minor effects due to the buffering capacity of the aquifer. However, local contamination due to influx of brackish waters in a subset of wells is significant. Geochemical modeling of major ion concentrations suggests that high alkalinity and carbonate mineral dissolution buffers pH changes due to CO2 influx. Analysis of trends in dissolved trace elements, chloride, and CO2 reveal no evidence of in situ trace element mobilization. There is clear evidence, however, that As, U, and Pb are locally co-transported into the aquifer with CO2-rich brackish water. This study illustrates the role that local geochemical conditions will play in determining the effectiveness of monitoring strategies for CO2 leakage. For example, if buffering is significant, pH monitoring may not effectively detect CO2 leakage. This study also highlights potential complications that CO2 carrier fluids, such as brackish waters, pose in monitoring impacts of geologic sequestration.  相似文献   

16.
Subsurface sequestration of CO2 in oil and gas provinces where permanence of hydrocarbon accumulations has proven the reliability of potential traps is rightly seen as a solid option for containment of CO2 atmospheric concentrations. However, one of the most promising provinces for carbon storage in North America, the Texas Gulf Coast, has also been heavily drilled for more than a century, puncturing many otherwise perfectly sound seals (>125,000 wells over ~50,000 km2). As a result, boreholes and, in particular, older abandoned wells could be major leakage pathways for sequestered CO2. This article presents statistics on well spatial and depth distribution that have been drawn from public domain sources and relates these data to historical plugging and abandonment regulations in the Texas Gulf Coast. Surface-well density averages of 2.4 wells/km2 can be locally much higher—but also much lower in larger areas. Average well penetration density drops to 0.27 and 0.05 well/km2 below a depth of 2,440 and 3,660 m, respectively. Natural mitigating factors such as thief zones and heaving “shales” could also play a role in limiting the impact of these direct conduits to the shallow subsurface and surface.  相似文献   

17.
One of the uncertainties in the field of carbon dioxide capture and storage (CCS) is caused by the parameterization of geochemical models. The application of geochemical models contributes significantly to calculate the fate of the CO2 after its injection. The choice of the thermodynamic database used, the selection of the secondary mineral assemblage as well as the option to calculate pressure dependent equilibrium constants influence the CO2 trapping potential and trapping mechanism. Scenario analyses were conducted applying a geochemical batch equilibrium model for a virtual CO2 injection into a saline Keuper aquifer. The amount of CO2 which could be trapped in the formation water and in the form of carbonates was calculated using the model code PHREEQC. Thereby, four thermodynamic datasets were used to calculate the thermodynamic equilibria. Furthermore, the equilibrium constants were re-calculated with the code SUPCRT92, which also applied a pressure correction to the equilibrium constants. Varying the thermodynamic database caused a range of 61% in the amount of trapped CO2 calculated. Simultaneously, the assemblage of secondary minerals was varied, and the potential secondary minerals dawsonite and K-mica were included in several scenarios. The selection of the secondary mineral assemblage caused a range of 74% in the calculated amount of trapped CO2. Correcting the equilibrium constants with respect to a pressure of 125 bars had an influence of 11% on the amount of trapped CO2. This illustrates the need for incorporating sensitivity analyses into reaction pathway modeling.  相似文献   

18.
CO2 storage in geological formations is currently being discussed intensively as a technology with a high potential for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis or stochastic approaches based on a brute-force approach of repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a higher-order orthogonal basis of polynomials to approximate dependence on uncertain parameters (porosity, permeability, etc.) and design parameters (injection rate, depth, etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation, and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs with a minimum failure probability. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al., Comput Geosci 13:451–467, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speed-up by a factor of 100 compared with the Monte Carlo evaluation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of the predicted leakage rates toward higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios.  相似文献   

19.
Modeling geological carbon storage represents a new and substantial challenge for the subsurface geosciences. To increase understanding and make good engineering decisions, containment processes and large-scale storage operations must be simulated in a thousand-year perspective. Large differences in spatial and temporal scales make it prohibitively expensive to compute the fate of injected CO2 using traditional 3D simulators. Instead, accurate forecast can be computed using simplified models that are adapted to the specific setting of the bouyancy-driven migration of the light fluid phase. This paper presents a family of vertically integrated models for studying the combined large-scale and long-term effects of structural, residual, and solubility trapping of CO2. The models are based on an assumption of a sharp interface separating CO2 and brine and can provide a detailed inventory of the injected CO2 volumes over periods of thousands of years within reasonable computational time. To be compatible with simulation tools used in industry, the models are formulated in a black-oil framework. The models are implemented in MRST-co2lab, which is an open community software developed especially to study and optimize large-scale, long-term geological storage of CO2. The resulting simulators are fully implicit and handle input from standard geomodeling tools.  相似文献   

20.
CO2 geological storage is a transitional technology for the mitigation of climate change. In the vicinity of potential CO2 reservoirs in Hungary, protected freshwater aquifers used for drinking water supplies exist. Effects of disaster events of CO2 escape and brine displacement to one of these aquifers have been studied by kinetic 1D reactive transport modelling in PHREEQC. Besides verifying that ion concentrations in the freshwater may increase up to drinking water limit values in both scenarios (CO2 or brine leakage), total porosity of the rock is estimated. Pore volume is expected to increase at the entry point of CO2 and to decrease at further distances, whereas it shows minor increase along the flow path for the effect of brine inflow. Additionally, electrical conductivity of water is estimated and suggested to be the best parameter to measure for cost-effective monitoring of both worst-case leakage scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号