首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
液力缓速器液压控制系统设计   总被引:1,自引:0,他引:1  
李丹  杨耀东 《机床与液压》2019,47(7):114-116
液力缓速器体积小,安装方便,在车辆中的使用越来越广泛。设计一种小型液力缓速器及其液压控制系统。该控制系统整体结构简单,布置紧凑,操作方便,在小型车辆上也适用。采用转阀改变缓速器进、出油口通流面积,控制缓速器的制动力矩。转阀具有结构简单、响应迅速且液动力小等优点。该液力缓速器及其控制系统能为小型车辆提供稳定的辅助制动力,并实现多挡位精确控制。  相似文献   

2.
加装液力缓速器汽车恒速下坡控制是一个时变、非线性控制过程。为使汽车恒速下坡控制满足无静差、响应快的要求,通过分析液力缓速器控制特性与模糊控制特点,提出采用分级变论域模糊控制策略实现汽车恒速下坡控制。采用MATLAB/Simulink建立重型汽车下坡动力学模型和分级变论域模糊控制器,对汽车恒速下坡控制进行仿真分析,并与常规模糊控制算法控制性能进行比较。研究结果表明:分级变论域模糊控制算法能满足汽车恒速下坡控制性能要求,控制效果明显优于常规模糊控制。  相似文献   

3.
综述近年来国内外液力缓速器的设计理论、试验技术等研究现状,包括液力缓速器国内获得的专利、基于逆向工程的设计研究、一维束流理论的理论计算研究、CFD数值研究、基于流固体耦合技术的结构强度研究等在液力缓速器设计理论上的应用,总结相应的研究进展和取得的成果。  相似文献   

4.
长距离下坡工况运行时,为了保持重载车辆能够稳定持续地制动,通常需要安装液力缓速器装置,以保证整车长时间制动而不至温度过高。缓速器内部流场的分布直接影响到机构的工作性能及可提供的制动力矩。基于其内部结构和工作特性,采用计算流体力学CFD搭建其模型并对内、外全流场进行分析,并对不同工作状态下的制动力矩进行计算;在模型分析的基础上,搭建机构的试验台,通过试验分析验证仿真力矩分析的可靠性与准确性。结果可知:机构内部流场整体分布比较合理;运行速度、充液率是影响机构制动力矩的重要因素。试验结果验证了模型仿真的准确性及可靠性,为同类研究提供参考。  相似文献   

5.
提出一种新型液力缓速器应用于非驱动桥,以车轮主轴运动为动力源,实现整体缓速系统的辅助制动.对液力缓速器的整体及泵轮、 涡轮的机械结构进行了设计;基于已建立的流道模型,利用一维束流理论对流体在流道的运动速度进行求解,获得液体在流道内的湍流运动形式;分别对叶片数目不同的流道进行了仿真求解与对比,进而获得较佳的叶片数目;通过采用大涡模拟并结合可动区域耦合计算的滑动网格法,对不同充液量下液力缓速器的缓速性能进行了研究,进一步对该新型液力缓速器的缓速性能进行了验证,为深入开展该项研究提供了数据支持与理论依据.  相似文献   

6.
阐述了液力缓速器的结构和工作原理;运用相似理论进行制动力矩计算方程的推导;以车辆动力学为基础,以道路坡度为i,液力缓速器安装于重载车辆变速箱输出二轴为工况前提,对液力缓速器长下坡恒速制动方程进行理论推导;将液力缓速器制动力矩计算方程与恒速制动方程结合,给出了液力缓速器对车辆的制动减速度综合方程,为液力缓速器恒速制动功能的开发提供了理论支持。  相似文献   

7.
现有关于液力缓速器制动流场数值计算方法的研究均忽略了换热芯子的流阻压降作用,导致计算边界条件设置不准确的问题。为此,基于三维扫描还原的模型重建技术,考虑换热芯子的流阻压降作用,采取全流道式选取方案,选用RNG双方程模型与基于压力的PISO求解算法,运用CFD技术对VOITH公司VR120液力缓速器制动流场进行全流道式数值计算,获得制动力矩与转速特性曲线,并使用流场压力云图对换热芯子的流阻压降作用进行验证分析。结果表明:制动力矩随着转速的升高呈现二次方增长趋势;换热芯子的流阻压降作用显著,是不可忽略的流场边界条件,全流道式数值计算方法是必要的。  相似文献   

8.
基于双向流固耦合技术(FSI),采用非稳态模型,获得叶片结构变形对流场分布的影响,流场压力和惯性离心力作用下的叶片变形和等效应力。叶片变形主要是由于介质对叶片的作用力而非惯性离心力的作用。变形作用改变叶片的压力梯度,从而改变边界层流动,促进边界层分离,增加流动过程中的涡黏度。叶片的粗糙度可以促使边界层从层流转为湍流,抑制边界层分离。文中揭示液力缓速器能量耗时的主要过程。为提高扭矩和轻量化设计中带来的叶片强度问题,提供设计和校核的理论支持。  相似文献   

9.
基于ANSYS FLUENT 14.5仿真平台,选用RNG_(κ-ε)双方程模型与基于压强-速度的SIPMLEC求解算法,对VR120液力缓速器内流场进行全流道数值仿真分析,得到不同转速下的制动扭矩值,并通过数据拟合,建立制动扭矩与转速之间的关系式;同时,利用工况试验台,测定液力缓速器在不同转速下的制动扭矩值,并与数值仿真分析结果进行比较,结果表明:试验测定值与仿真分析值变化趋势一致,误差都在10%以内,验证了应用该算法对液力缓速器进行仿真分析是有效可行的,为液力缓速器的进一步设计提供参考依据。  相似文献   

10.
为降低液力缓速器空转损耗,以自主开发的THB40液力缓速器样机为基础,在不影响制动效果前提条件下,研究空转损耗流场沿叶片弦面的速度涡特性矢量云图,依据油液与空气产生的冲量不同,设计出一种仅对空转涡流场有效降损的扰涡技术方案;使用数值计算方法对扰涡技术方案降损效果进行16个速度点的预测分析,结果表明:最小降损率为73.82%,最高降损率为78.27%,平均降损率为75.6%。研究内容为液力缓速器降空损设计提供技术思路与计算方法。  相似文献   

11.
建立了某型液力减速器液压控制阀的三维几何模型,基于RANS方程和标准的k-ε湍流模型,采用非结构网格,用SIMPLE算法对该液压阀在不同开度下的三维内流流场进行了CFD数值模拟分析,得到了在不同开度下液压阀内流体的压力和流速的变化规律,并对数值模拟的结果进行后处理,得到了液流作用在阀板上的力矩,对液力减速器的液压控制系统的设计具有一定的参考价值.  相似文献   

12.
以满足某型车辆下坡缓速制动为目的,通过车辆受力分析和匹配计算,得到液力缓速器在不同挡位以及不同坡度下所需制动力矩。以Fluent软件为平台,对液力缓速器内部流场进行数值模拟,在不同转子转速下基于流场数值解对制动力矩进行求解;开展液力缓速器台架性能试验,将试验数据与仿真结果进行力矩值对比分析。结果表明:在相同坡度,匀速下坡所需制动力矩随挡位的升高而增加;在同一挡位,所需制动力矩随坡度增大而增加;随转子转速升高,缓速器制动力矩增加,在最高转速2 100 r/min时,制动力矩达到2 308.3 N·m。仿真值与试验值基本一致,证明了仿真分析的准确性。  相似文献   

13.
针对汽车覆盖件液压机的特点,设计基于比例插装阀的多缸变压边力液压控制系统;基于Simulink建立系统简化模型,确定影响其性能的插装阀的4个主要可调参数,即插装阀阻尼孔直径d,长度l,控制腔弹簧刚度K和预紧力Fs;采用复合形法进行参数组合优化仿真分析并在12500kN汽车覆盖件液压机样机上进行实际测试。结果表明系统动态响应性能得到明显改善。  相似文献   

14.
履带车辆下长坡液力减速器持续制动性能仿真分析   总被引:2,自引:1,他引:1  
在对履带车辆下坡制动过程中整车和液力减速器进行动力学分析的基础上,建立基于SIMULINK的履带车辆液力减速器下长坡持续制动动态仿真模型.仿真结果表明:履带车辆下坡行驶时,适时应用液力减速器持续制动,可以满足安全恒速下坡的要求,并可有效延长机械制动器的使用寿命.  相似文献   

15.
水压电液比例方向阀是智能化液压支架的核心控制元件,非线性的阀口液动力是影响比例阀性能的关键因素。非全周开口的"锥滑阀"是水压比例阀常采用的结构形式,"锥滑阀"有先节流后密封与先密封后节流两种结构形式。分别建立了两种结构的三维流道模型并进行了网格划分,通过网格无关性验证选取了合适的网格密度。利用CFD仿真方法得到不同阀口开度、不同阀口压差下阀芯所受液动力变化曲线,结果表明:两种"锥滑阀"结构阀口液动力变化趋势相同,先密封后节流结构的阀口液动力要明显小于同等工况下先节流后密封结构的液动力。最后搭建了液动力验证试验系统,通过测量阀口流量和阀口压差间接验证了CFD仿真分析的正确性。  相似文献   

16.
恒力液压机能实现加载力、位移或其速率的恒定。测控系统以小型PLC为控制核心,位移测量采用光栅尺,并采用PLC中断程序进行4倍频处理以提高测量精度,压力测量采用带有通讯功能的高性能调理转换模块代替性能有限的PLC的A/D模块,显著提高了测量分辨率和精度。自编的PID算法充分发挥了PLC的性能,提高了闭环控制精度。液压机的参数设定、显示由触摸屏完成,而长期的数据保存、输出由上位机实现。试验结果表明,测控系统达到了设计要求。  相似文献   

17.
为满足无人值守工况下系统长待机、快速响应的工作需求,对其液压回路内设置的液控单向阀在长期待机工况下的可靠性提出了非常高的要求。为满足此要求,设计一个用于验证液控单向阀长待机状态下可靠性的液压系统,并搭建相应的试验数据采集系统。在短期保压、长期保压2种模式下对液控单向阀的保压性能、长待机后开启的可靠性进行试验验证,获得了液控单向阀的可靠性能力及长待机状态下的技术状态变化情况,为该阀后续开展可靠性提升改进提供了数据支持。  相似文献   

18.
传统的液压阀门在控制中反应迟钝,不能满足快速的智能控制与自动调节的要求.基于传统的液压阀门,利用MSC 51单片机作为主控制器,用数字阀控制摆动缸来驱动阀门的开合,采用差压传感器和角位移传感器作为反馈元件对液压阀门的智能控制进行了改进,使阀门控制达到智能化、数字化、集成化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号