首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
探究高温循环下岩石内部孔隙演化及其对物理力学特性的影响,对核废料地质处置、地热开发等地下工程的长期稳定性分析具有重要意义。为了定量分析高温循环对花岗岩孔隙结构及物理力学性质的影响,综合利用扫描电镜、差热分析等方法研究25℃~800℃高温循环下花岗岩的表面特征、质量、体积、纵波波速、抗拉强度、孔隙度、孔径分布和微观结构等演化规律。研究结果表明:(1)随着温度升高,花岗岩的表面裂纹、色差、质量损失率、体积膨胀率、纵波波速衰减率不断增加,抗拉强度逐渐减小,当T>500℃后,花岗岩的物理力学参数变化显著,在5次热循环后,岩石物理力学参数的变化更加明显。(2)高温能够促进花岗岩孔隙发育,岩石内部微、小孔隙逐渐生长并连通形成中、大孔隙,造成岩石孔隙连通性增强,且热循环会进一步增加孔隙结构之间的连通性,导致中孔和大孔占比上升,孔隙率进一步增大。(3)高温循环下花岗岩物理力学性质劣化与其内部孔隙结构的变化密切相关,质量损失率和体积膨胀率随等效平均孔隙半径的增大呈线性增加,纵波波速和抗拉强度随等效平均孔隙半径的增大呈指数型增加。(4)高温下花岗岩会发生脱水、石英相变、矿物氧化、化学键断裂等物理化学...  相似文献   

2.
深部围岩在开挖卸载过程中表现出的峰后复杂力学特性一直是工程界十分关注的问题,深入研究岩石峰后力学行为对深部资源开采工程具有重要意义。以深部立井马头门工程为依托,通过室内试验方法研究花岗岩峰后力学特性,采用非线性拟合方法获得花岗岩峰后软化模量与围压的指数关系式,假定岩石的剪胀角为恒定值,基于塑性理论构建考虑围压及剪胀角影响的岩石峰后应变软化模型;以FLAC3D为平台开发数学模型并进行验证,通过构建马头门巷道数值模型,分析深部围岩在应变软化条件下的破坏特征规律。通过研究可知,花岗岩峰后破坏具有脆–延性转化趋势,在高围压条件下,岩石峰后表现出塑性软化破坏特征,岩石峰后软化模量随着围压的增大而减小;通过FLAC3D进行数值验证可知,构建的应变软化模型与试验数据基本吻合,所建立的应变软化模型具有较高的可靠性;通过数值模拟方法分析深部马头门巷道围岩破坏特征可知,巷道拱顶及拱脚等局部区域出现了塑性剪切应变,与现场巷道围岩破损位置及深度基本相同。  相似文献   

3.
4.
高温后石灰岩的物理力学特性研究   总被引:1,自引:0,他引:1  
对焦作石灰岩在常温及经历100℃~800℃不同温度作用后的物理力学特性进行了试验研究,详细分析了加温后石灰岩的表观形态、体积、质量、密度和纵横波波速以及单轴下石灰岩的峰值应力、峰值应变和弹性模量等的变化情况,并对石灰岩高温劣化的影响因素进行了分析。研究结果表明,高温使石灰岩的表观形态发生改变:在400℃以内,温度对石灰岩的物理力学性质的影响不大;200℃以下石灰岩的体积略微减少,超过200℃后石灰岩的体积明显增大,石灰岩的密度随温度的升高而逐步减少;随温度的升高,石灰岩的纵、横波波速大都呈现下降;高温后石灰岩的波速比变化呈无规律性;高温后石灰岩的动弹性模量随温度上升而下降。经历的温度超过400℃后石灰岩的峰值应力和弹性模量均有不同幅度的降低,而800℃内石灰岩的峰值应变随温度的升高变化不明显。温度引起的热应力作用、矿物组分和微结构变化导致石灰岩物理力学性质发生改变与高温劣化。  相似文献   

5.
由于岩石材料动态破坏的复杂性,理论分析和实验研究都还很不充分,岩石的动力特性越来越受到重视。本文采用霍普金森压杆对花岗岩圆柱试样进行了动态压缩试验,建立了加载速率与花岗岩冲击破坏时的弹性应变能、结构破坏能及岩石破坏形态之间的关系。试验结果表明:甘肃地区弹模在17~21 GPa的花岗岩在瞬时加载条件下,强度随着加载速率的增加而提高;动态压缩强度平均强度为240 MPa,动态模量为31.5 GPa;应变率的变化范围在81~210 s-1,动态压缩强度随着应变率的增加有明显增大的趋势;当冲击速度增加时,岩石破坏后释放的能量显著增长,应变率越大,岩石破碎块越小。该试验结果能够评价动态荷载作用下花岗岩的强度参数,为类似区域的工程设计与施工提供依据。  相似文献   

6.
急剧冷却后花岗岩物理力学及渗透性质试验研究   总被引:1,自引:0,他引:1  
急剧冷却作用下花岗岩物理力学及渗透性的研究,对深入认识干热岩开发中储层的改造及演化具有重要意义。以20℃~600℃急剧冷却处理后花岗岩为研究对象,开展不同温度急剧冷却后物理力学性质的测试,采用压力脉冲衰减法测试圆柱体试样的渗透率。得到以下结论:(1)随着经历温度的升高,急剧冷却后试样的密度、纵波速度、抗压强度、弹性模量及抗拉强度均单调下降,渗透率先缓慢后急剧增加。这是由于缓慢升温及保温阶段,花岗岩由于矿物颗粒的热膨胀不匹配和热膨胀各向异性,产生热破裂;急剧冷却时,沿试件径向产生的温度梯度应力诱发了更多的裂纹,最终导致花岗岩物理力学性质的劣化及渗透性的增强。(2)急剧冷却条件下,花岗岩的脆延性转化温度为500℃~600℃,低于此温度,花岗岩主要表现为脆性破坏;高于此温度,花岗岩向延性转化。(3)自由状态缓慢升温急剧冷却条件下,花岗岩渗透率变化的阈值温度为400℃。(4)基于弹性模量的损伤因子能较准确地反应花岗岩力学性质的劣化,而基于纵波速度的损伤因子会夸大力学性质的劣化程度。  相似文献   

7.
花岗岩残积土是华南地区进行工程建设时的常见地层之一,它的工程性质易受到周围环境的影响。采用人工方法制备了4种不同浓度的硫酸溶液浸泡后的试样,同时与原状试样进行对比,系统研究了不同浓度的硫酸溶液、不同的酸液溶蚀时间对花岗岩残积土试样物理、力学特性的影响。试验结果表明:(1)随着酸液浓度及酸液溶蚀时间的增大,试样的土粒比重减小、孔隙比增大、颗粒粒径级配变差;(2)试样的剪应力-剪切位移关系曲线类型会随着法向压力及酸液溶蚀作用而发生变化;(3)硫酸溶液浸泡后,试样的抗剪强度参数粘聚力和内摩擦角都降低了,但粘聚力的降低效果更明显。  相似文献   

8.
厦门海底隧道强风化花岗岩力学特性研究   总被引:2,自引:1,他引:1  
 厦门海底隧道海域隧道地段存在多处风化深槽,岩体主要为全、强风化花岗岩。由于该类岩石强度低,压缩性高,自稳和自承能力差,在隧道衬砌结构的设计和施工工艺的选择方面会遇到一系列特殊的问题。主要通过对天然和重塑强风化花岗岩岩样进行一系列的室内试验,在掌握其基本物理力学特性的基础上,重点对其流固耦合作用下的力学特性进行研究,并建立该类强风化花岗岩的力学模型,通过反演分析对力学模型进行验证。研究成果对风化花岗岩类工程的力学参数取值有重要借鉴意义,对该类岩体中隧道的设计施工具有指导作用。  相似文献   

9.
干热岩地热开发中,井筒钻进及热储层的热交换都涉及高温岩体受不同程度的冷热循环,导致井筒破裂失稳或热储层破裂程度增加,为了揭示其机制,采用岩石力学试验机并结合声发射监测系统,研究不同温度循环作用后花岗岩的纵波波速及巴西劈裂破坏过程。结果表明:(1)随着温度循环次数的不断增加,2种冷却作用下花岗岩所对应的抗拉强度均逐渐降低,遇水冷却循环作用后花岗岩的抗拉强度要低于自然冷却状态下花岗岩的抗拉强度,且花岗岩在高温高循环次数下的劣化程度较为明显,当温度大于500℃时,花岗岩试样的表观颜色逐渐变为土黄色,试样逐渐由脆性向延性转化。(2)根据温度可以将花岗岩的破坏特征分为3个阶段,在低温阶段(100℃~200℃),试样均沿着巴西圆盘中心线发生破裂;中温阶段(300℃~400℃),试样沿着与直径呈一定角度破裂;高温阶段(500℃~700℃),试样破裂模式复杂,较为破碎。(3)低温阶段时的花岗岩随温度循环的变化其纵波波速、强度特征以及变形均变化较小;当试样处于中、高温度阶段时,随循环次数的增加其强度、波速等各项参数衰减幅度逐渐增大。研究结果可为地热开发中井筒破坏失稳及热储层岩体的破裂模式提供理论参考。  相似文献   

10.
《土工基础》2016,(6):714-717
采用人工方法,从某排土场基底采取花岗岩坡残积土进行室内常规直剪固结快剪试验与中压三轴固结不排水试验。在试验中,分别测定每个试样应力应变曲线及试验前后的密度、含水率。经数据整理发现,CU试验各级固结围压下,试样固结后的密度、含水率与固结围压间呈规律性变化;通过统计分析得到了花岗岩坡残积土c、φ值与固结围压之间的变化关系。利用试样固结后的密度、含水率与固结围压之间的变化规律估算排土场基底花岗岩坡残积土在不同堆高时的物理特征;利用c、φ值与固结围压之间的变化关系,估算排土场基底花岗岩坡残积土在不同堆高时抗剪强度取值。  相似文献   

11.
花岗岩残积土作为一类同时具有黏性土、粗粒土组构特征与工程特性的特殊土,力学性能普遍易受施工扰动和开挖卸荷影响而诱发灾害。从钻探扰动和成孔后应力释放对土体力学性质的影响出发,通过对试验场地内花岗岩残积土开展自钻式旁压试验(SBPT)和预钻式旁压试验(PMT)在不同成孔时间后的对比分析,研究了土体原位强度指标、承载力特征值和刚度衰减性状的响应特征。结果表明:钻探扰动对花岗岩残积土的强度、承载力和刚度特征的弱化影响十分明显,且弱化程度随卸荷过程中应力释放时间的增长不断加深;提出扰动系数R(u)对不同试验条件下土体性质的扰动程度进行评价,发现刚度参数G_f受钻探扰动和卸荷滞时效应的影响最大,不排水剪切强度强度c_u次之,承载力特征值f_(ak)受影响最小;采用土体刚度非线性分析法获取了基于SBPT与PMT试验的原位剪切模量-剪应变衰减曲线(G–γ曲线),用Stokeo方程描述G–γ曲线的形态特征有较好的拟合效果。研究结果可为花岗岩残积土分布地区的工程设计与施工提供参考。  相似文献   

12.
卸荷条件下花岗岩力学特性试验研究   总被引:19,自引:15,他引:19  
 基于岩石试件的卸荷试验,研究卸荷条件下岩石的变形、参数及破裂特征。研究结果表明:(1) 卸荷过程中岩石向卸荷方向回弹变形较为强烈、扩容显著,脆性破坏特征明显。(2) 卸荷过程中岩石的变形模量E逐渐减小,泊松比m逐渐增大,E减小了5%~27%,而m增大了50%~335%,变化均随初始围压的增大和卸荷强度的增强而增大,两者均与体积应变相关。(3) 相对于加载试验,卸荷岩石的c减小而j增大,且卸荷强度愈强,c减小得越多,j增大的程度越小。峰值c减小了33.2%~47.8%,而残余c为正常值的65.3%~77.6%,峰值j增加了14.7%~33.2%,而残余j增大了5.9%~9.4%。(4) 卸荷条件下岩石破坏具有较强的张性破裂特征,各种级别的张裂隙发育,双向卸荷时甚至在次卸荷方向上也可能出现张拉裂隙,剪性破裂面一般追随张拉裂隙发展。  相似文献   

13.
花岗岩力学特性温度效应的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用MTS815岩石力学试验系统完成了不同温度下的20个花岗岩试样的三轴压缩试验。分析了温度对花岗岩试样的强度特性、变形特性以及破坏特征的影响,能够在实际工程中起到一定的指导作用。试验结果表明:在20 ℃到40 ℃的范围,弹性模量随温度升高而降低,泊松比随温度升高而升高,且变化幅度都较大,但当温度超过40 ℃以后,随温度升高的变化幅度明显降低;随着温度的升高,峰值强度逐渐降低,而且温度对峰值强度的影响随着围压的增加而减弱;内聚力c值随温度升高而降低,内摩擦角φ值随温度升高有升高的趋势,抗剪强度τf致呈线性减小的关系,且随着正应力的升高,温度对花岗岩抗剪强度的影响有减弱的趋势;花岗岩的变形破坏特征在一般条件下表现为典型的弹脆性体特征,但是在较高围压和较高的温度耦合作用下表现为弹塑性变形-累进性破裂-脆性破坏的特征。  相似文献   

14.
低温条件下花岗岩力学特性试验研究   总被引:3,自引:1,他引:3  
 从辽宁锦州拟建地下储库工程现场钻取典型花岗岩岩芯,进行不同冻结温度(-10 ℃~-50 ℃)和不同含水状态(干燥和饱和)的单轴及三轴压缩试验,分析岩石的变形破坏规律、干燥和饱和状态抗压强度以及三轴剪切强度参数c,j 值随温度的变化关系。试验结果表明:(1) 无论干燥还是饱和试样,微风化花岗岩单轴及三轴抗压强度随着低温温度的降低而提高,但呈现非线性增加的趋势,得到花岗岩抗压强度随低温温度变化的非线性关系拟合式,并认为微风化花岗岩存在一个抗压强度趋于稳定的温度界限值,此值约为-40 ℃;(2) 微风化花岗岩在干燥和饱和条件下,黏聚力c值随温度的降低而增大,在干燥条件下尤为明显。干燥条件下,微风化花岗岩内摩擦角随低温温度降低变化较小,摩擦角基本保持在57°左右,饱和条件下,微风化花岗岩内摩擦角随温度降低而增加, 由-10 ℃~-50 ℃增长幅度约为3.43%。该研究成果可为液化天然气(LNG)的低温地下存储提供一定的力学参数依据。  相似文献   

15.
 采用自主研制的20 MN伺服控制高温高压岩体三轴试验机,对f 200 mm×400mm的花岗岩体内含f 40 mm的钻孔在600 ℃以内及6 000 m埋深静水压力下钻孔围岩的热弹性变形进行深入的试验研究。根据热弹性变形试验结果反演计算出高温高压下钻孔围岩的热物理及力学特性参数,并对钻孔围岩的热物理及力学参数进行认真细致的分析。研究结果表明:(1) 高温不同埋深应力下钻孔围岩的热变形可分为3个阶段:低温热变形微弱阶段,中高温热变形快速增长阶段,高温热变形平稳阶段,且埋深(即应力大小)对于钻孔围岩的热变形具有明显的影响;(2) 高温高压下含有钻孔的花岗岩体以剪切方式破坏,花岗岩体在经历500 ℃~600 ℃的高温仍呈现出脆性特征,岩体破坏的条件为6 000 m埋深静水压力,600 ℃左右;(3) 高温下钻孔围岩的弹性模量随温度的升高呈负指数规律减小;(4) 高温下钻孔围岩的泊松比随温度的升高总体呈增大的趋势;(5) 高温不同埋深应力下钻孔围岩的热膨胀系数不同,埋深对钻孔围岩的热膨胀系数具有很大影响。研究结果可为高温岩体地热开发深钻施工及钻井围岩稳定性维护提供理论依据与技术储备。  相似文献   

16.
600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究   总被引:6,自引:1,他引:6  
 通过对600 ℃内高温状态花岗岩遇水冷却后的力学特性试验研究及花岗岩体遇水热破裂劣化机制的探讨,发现高温状态花岗岩遇水冷却过程中,由于岩体内温度急剧变化,岩体内产生热破裂或热冲击现象,岩体力学性能劣化,从而导致超声波速、单轴抗压强度、抗拉强度及弹性模量随温度逐渐减小。具体表现为:(1) 高温状态花岗岩遇水冷却后超声波速随着经历温度的升高呈负指数函数关系降低;(2) 花岗岩经过高温遇水冷却处理,峰值应力和峰值应变及其单轴抗压强度都受到很大影响;(3) 高温状态遇水冷却处理对花岗岩的抗拉强度影响明显,抗拉强度随温度的变化规律符合负指数函数关系;(4) 高温状态花岗岩遇水冷却后其弹性模量随温度的升高呈负对数规律减小。  相似文献   

17.
《低温建筑技术》2020,(3):15-19
在寒区岩土工程建设中,由于日夜及四季温差较大,岩石在反复冻融和开挖荷载的共同作用下损伤加剧。为研究冻融岩石损伤特性的发展规律,文中选取孔隙率较大的绿砂岩,通过室内冻融循环试验、单轴压缩试验和超景深三维显微观测对砂岩质量损失、力学特性和微观结构进行分析,得出随着冻融循环次数的增多,砂岩单向受压时弹性模量和变形增加、内部胶结能力减弱,破坏时岩石完整性降低、颗粒排列紊乱;最后ABAQUS模拟显示冻融循环次数的增多使砂岩热应变最大值由棱角发展至表面中部,最后向内部扩展。研究表明冻融循环作用主要改变砂岩内部结构分布,进而影响岩石物理力学特性,为岩石冻融破坏过程的分析提供重要参考价值。  相似文献   

18.
粉煤灰的物理力学特性试验研究   总被引:1,自引:0,他引:1  
李自立  宋日英 《山西建筑》2010,36(20):147-148
结合某电厂贮灰场利用粉煤灰建造子坝工程的需要,对粉煤灰的基本物理力学特性进行了试验,得出了粉煤灰的基本物理力学参数指标,从而对粉煤灰的工程应用具有一定的指导意义。  相似文献   

19.
通过系统的试验研究难溶性盐钙芒硝基本的力学特性以及溶解和其溶解后的孔隙率等,充分认识了钙芒硝岩盐的物理力学特性.实验发现钙芒硝岩盐属于软岩,其抗压强度为18.86 MPa,而抗拉强度实测值为2.59 MPa,其破坏形式属于典型的柱状劈裂破坏,同时也说明盐岩在自然条件下是脆性材料.通过长时间的蠕变实验,回归出钙芒硝盐岩蠕变在不同应力水平下随时间变化的曲线,其抗压强度50%时的曲线方程为ε(t)=0.0098ln(t)-0.0014,抗压强度80%时的蠕变曲线方程为ε(t)=0.012ln(t)-0.0056,应力水平高时其蠕变速率高于低应力水平的蠕变速率.钙芒硝属于难溶性盐,其溶解率非常低,在水中溶解速率曲线方程为vt=-0.0005Ln(t) 0.0041;溶解速度方程为v=-0.0002Ln(t) 0.0015.通过理论分析计算得出其溶解完全后孔隙率为35.87%.溶解速率、溶解速度及溶解后孔隙率的研究对充分认识难溶性钙芒硝盐岩水溶开采机理有指导意义.  相似文献   

20.
大岗山花岗岩动态力学特性的试验研究   总被引:1,自引:0,他引:1  
以大岗山花岗岩为例,分别进行静力三轴和动力三轴试验,分析花岗岩的抗压强度、弹性模量、泊松比以及相应的极限应变等重要参数与应变速率的关系。试验结果表明:不同围压下,随应变速率的增加,花岗岩的侧向破坏应变随应变速率的增加几乎保持不变,并且绝大部分统计结果值在0.002~0.004范围内;轴向破坏应变的增加幅度不明显;抗压强度增加,试验现象明显;弹性模量的提高幅度随围压的增加有减小的趋势;不同围压下花岗岩的泊松比与应变速率没有明确的关系。基于大岗山花岗岩静力三轴测试全过程应力–应变曲线和损伤力学分析,发现脆性岩石在不同围压下均以侧向损伤为主,通过回归拟合分析,建立大岗山花岗岩静力三轴压缩条件下的损伤演化方程。进一步根据损伤理论建立岩石动力损伤与静力损伤之间的关系,考虑动态强度与初始弹性模量的率相关性建立经验型的岩石动力损伤本构模型,可以作为研究地震荷载作用下岩体结构中应力波传播和衰减规律的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号