首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New TiC/Co1.5CrFeNi1.5Ti0.5 cermet was developed by exploiting the advantages of the high-entropy alloy (HEA) binder. A much finer grain structure and thus improved hardness–toughness combination were obtained as compared with two traditional binders, Ni and Ni13Mo7. From the coarsening behavior of TiC grains, the coarsening process of TiC in these three binders is diffusion-controlled. The activation energy of TiC + 20%Co1.5CrFeNi1.5Ti0.5 is the highest and that of TiC + 20%Ni is the lowest. The high activation energy of the Co1.5CrFeNi1.5Ti0.5 binder was attributable to its high content of carbon-strong-binding elements, Cr and Ti, and cooperative diffusion and higher packing density of multiple different-sized atoms. Low diffusion coefficient, low surface energy of TiC grains, and low solubility of Ti in the HEA liquid explain the slow coarsening of TiC grains. This study demonstrates that Co1.5CrFeNi1.5Ti0.5 is an excellent HEA binder for TiC cermets.  相似文献   

2.
High-entropy alloys (HEAs) are a newly developed family of multi-component alloys. The potentiodynamic polarization and electrochemical impedance spectroscopy of the AlxCrFe1.5MnNi0.5 alloys, obtained in H2SO4 and NaCl solutions, clearly revealed that the corrosion resistance increases as the concentration of aluminium decreases. The AlxCrFe1.5MnNi0.5 alloys exhibited a wide passive region, which extended >1000 mV in acidic environments. The Nyquist plots of the Al-containing alloys had two capacitive loops, which represented the electrical double layer and the adsorptive layer. SEM micrographs revealed that the general and pitting corrosion susceptibility of the HEAs increased as the amount of aluminium in the alloy increased.  相似文献   

3.
The electrochemical corrosion behaviour of a series of ZrNi5−xCox alloys with x=0-4 has been tested using potentiokinetic polarisation technique. The polarisation curves were measured in deaerated 0.5 M sulphate solutions with pH=0.2-7 and in strong alkaline solution of KOH (pH=15). It is shown that the presence of greater amounts of Co in the alloy (x?2) worsens the passivating properties of the alloy in acidified sulphate solutions. On the other hand, in strong alkaline solutions, both low- and high-cobalt alloys undergo stable passivation. The degree of Ni substitution by Co in the alloys does not generally affect the shape of cathodic polarisation curves.  相似文献   

4.
In this article, the microstructure, hardness, and corrosion resistance of the Al0.3CrFe1.5MnNi0.5Tixand Al0.3CrFe1.5MnNi0.5Six(x = 0, 0.2, 0.5, 1.0) high-entropy alloys were investigated via X-ray diffraction(XRD)scanning electron microscopy(SEM), digital display Vickers hardness tester, and electrochemical technique These alloys are mainly composed of BCC solid-solution structure. When adding high content of Ti or Si elemen(x C 0.5), some intermetallic compounds are found in the microstructure, which makes the alloys have a high hardness, high brittleness, and easy cracking. While the alloys with low content of Ti or Si(x = 0.2) have a hardness of HV 420–HV 430, and its hardness increases about 14 %compared with that of Al0.3CrFe1.5MnNi0.5. Electrochemical results in 3.5 % NaCl solution show that the alloying elements Ti and Si have a negative influence on the corrosion resistance of the Al0.3CrFe1.5MnNi0.5alloys.  相似文献   

5.
The electrochemical behaviour of Ni-base alloys (Inconel 625, Inconel 718, G3 and Incoloy 825) is carried out at 80 °C in CO2/H2S corrosion environments using cyclic potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. The passivity mechanisms are analysed and discussed. In addition, some significant characterisation parameters such as Ecorr, Ipass, Epit, Epp, ΔE and Ipass in cyclic polarisation curves are analysed and compared to reveal the corrosion resistance of various Ni-base alloys. The equivalent circuit model and ZsimpWin software are utilised to discuss the Nyquist plots of various Ni-base alloys. The diffusion mechanism in EIS measurement is discussed. The result shows that the corrosion resistance of the Ni-base alloys to CO2 corrosion or CO2/H2S corrosion follows the sequence: Inconel 625 > G3 > Inconel 718 > Incoloy 825. H2S works as a cathodic depolariser with accelerating initiation of the corrosion process.  相似文献   

6.
A.P. Wang 《Corrosion Science》2007,49(6):2628-2635
In this paper, we report the corrosion behavior of Ni59Zr20Ti16Si2Sn3 and Ni53Nb20Ti10Zr8Co6Cu3 (at.%) amorphous alloys with glass forming ability (GFA) of ∼3 mm, and their crystalline counterparts in severe corrosive environment of 1 M HCl aqueous solution. From the results of polarization curves and X-ray photoelectron spectroscopy (XPS), it was found that the corrosion behavior in Ni-based amorphous alloys is very sensitive to the compositions and the structural homogeneity is favorable for their corrosion-resistance in 1 M HCl aqueous solution.  相似文献   

7.
研究Al含量和热处理对FeCoNiCrCu0.5Alx多主元高熵合金的相结构、硬度和电化学性能的影响规律。随着Al含量的增加,铸态合金的相结构由FCC相向BCC相转变。当x从0.5增加到1.5时,FeCoNiCrCu0.5Alx高熵合金的稳定结构由FCC结构向FCC+BCC双相结构转变。BCC相的硬度高于FCC相的,在氯离子及酸性介质中BCC相的耐腐蚀性均优于FCC相的。FeCoNiCrCu0.5Al1.0铸态合金具有高硬度和良好的抗腐蚀性能。  相似文献   

8.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   

9.
Zr-based metallic glasses passivate spontaneously, but exhibit also a certain pitting susceptibility. On the example of the Zr59Ti3Cu20Al10Ni8 alloy studied in 0.01 M Na2SO4 + x M NaCl (x = 0-0.1) electrolytes it is demonstrated that the surface finishing state and the pre-exposure conditions can significantly influence the free corrosion and anodic polarisation behaviour. Mechanical fine-polishing procedures can lead to extremely smooth topographies but also to Cu enrichment at the surface. This yields a pronounced Cu dissolution at low anodic polarisation prior to stable passivity and increases the pitting initiation susceptibility as compared to mechanically ground surface states.  相似文献   

10.
Fe-based soft-magnetic metallic glasses (MGs) of Fe80−xCrxP9C9B2 (x = 0, 2, 5, 8 and 16 at.%) with high glass-forming ability (GFA), good soft-magnetic properties and high corrosion resistance are fabricated. With the addition of Cr to FePC-based alloys, the GFA and saturation magnetization (Ms) slightly decrease while the corrosion resistance effectively increases. The Fe–Cr–P–C–B BMGs exhibit good GFA and fully glassy rods can be produced up to 1.8 and 1.5 mm in diameter for the 2 and 5 at.% Cr added alloys, respectively. The alloys with 2 and 5 at.% Cr addition also show good soft-magnetic properties featured by high Ms of 1.16 and 1.04 T, low coercivity of 2.7 and 2.2 A/m, respectively. Besides, the corrosion behavior of the alloys was studied by immersion tests and potentiodynamic polarization measurements. It was found that the addition of Cr efficiently enhances the corrosion resistance of Fe–Cr–P–C–B alloys and the glassy alloy with 5 at.% Cr addition exhibits better corrosion resistance in comparison with the stainless steel SUS304 in 3 mass% NaCl solution. The combination of large GFA, good soft-magnetic properties, high corrosion resistance as well as low cost makes the Fe–Cr–P–C–B alloys as promising soft-magnetic and anti-corrosive materials for industrial applications.  相似文献   

11.
The electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd (x = 0, 1, 2 and 4 wt.%) alloys in 3.5% NaCl solution was investigated. The corrosion behavior of the alloys was assessed by open circuit potential measure, potentiodynamic polarization, and electrochemical impedance spectroscopy. The electrochemical results show the intermetallic precipitates with Nd behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. During corrosion, Al2O3 and Nd2O3, in proper ratio, is incorporated into the corrosion film, and enhances the corrosion resistance.  相似文献   

12.
The polycrystalline pseudo-binary Bi0.5Sb1.5Te3 alloys have been prepared by hot pressing. X-ray diffraction analysis indicated that there is no noticeable preferred orientation in all the samples. Thermoelectric properties were measured and a relatively high ZT value of ∼0.9 was obtained at room temperature. Thermal mechanical properties were characterized by dilatometer and dynamic-mechanical thermal analyzer. The thermodynamic stability of these alloys could be kept from room temperature to 500 K. It is suggested that Bi0.5Sb1.5Te3 alloys are suitable for the applications below 500 K.  相似文献   

13.
Fe-rich amorphous alloys with minor-addition of Cr and/or Nb were examined with the aim of developing Fe-based amorphous alloys exhibiting simultaneously high saturation magnetization above 1.5 T and good corrosion properties. Fe82Cr2B8P4Si3C and Fe82NbB9P4Si3C amorphous alloys were found to exhibit high saturation magnetizations of 1.49 T and 1.57 T, respectively, and rather good corrosion resistance in 3.5 mass% NaCl solution at 298 K. The minor-addition of Cr or Nb enables the formation of amorphous alloy particles without harmful oxide layer by water atomization process which makes these alloys suitable for applications as soft magnetic core materials. The addition of 1 at% Nb improved the corrosion resistance through the increase in Ecorr value, which makes easy to reach passive state, and the suppression of pitting corrosion. Besides, it has been proved that the simultaneous addition of Nb and Cr has an effect on forming protective passive film.  相似文献   

14.
Solid solutions of (1 − x)La(Co1/2Ti1/2)O3-xLa(Mg1/2Ti1/2)O3 were used to prepare La(Mg1−xCox)1/2Ti1/2O3 using solid-state synthesis. X-ray diffraction patterns of the sintered samples revealed single phase formation. A maximum density of 6.01 g/cm3 was obtained for La(Mg1−xCox)1/2Ti1/2O3 (x = 1) ceramics sintered at 1375 °C for 4 h. The maximum values of the dielectric constant (?r = 29.13) and the quality factor (Q × f = 80,000 GHz) were obtained for La(Mg1−xCox)1/2Ti1/2O3 with 1 wt% ZnO additive sintered at 1375 °C for 4 h. The temperature coefficient of resonant frequency τf was −59 ppm/°C for x = 0.3.  相似文献   

15.
The corrosion behaviour of an HVOF Ni–5Al/WC–17Co coating on Al-7075 is investigated in 0.5 M H2SO4. In the temperature range of 25–45 °C, the coating exhibits pseudopassivity that effectively protects from localized corrosion. At 25 °C, pseudopassivity proceeds via three stages: during the first stage, oxidation of W in the binder phase occurs. The second stage is characterized by oxidation of W in both the binder and the carbide particles. The third stage is characterized by intensive hydration of WO3 and formation of Co3O4. During the second and third pseudopassive stages, the formation of a bi-layer surface film is postulated. The inner layer, consisting of anhydrous oxides, has a barrier character. The outer layer, composed of WO3 · xH2O, is unstable. In case of surface film disruption, the bond coat successfully hinders corrosion propagation into the Al-alloy. Higher electrolyte temperatures lead to faster corrosion kinetics and higher tendency for pitting.  相似文献   

16.
The formation of impurity LixNi1−xO when synthesizing spinel LiNi0.5Mn1.5O4 using solid state reaction method, and its influence on the electrochemical properties of product LiNi0.5Mn1.5O4 were studied. The secondary phase LixNi1−xO emerges at high temperature due to oxygen deficiency for LiNi0.5Mn1.5O4 and partial reduction of Mn4+ to Mn3+ in LiNi0.5Mn1.5O4. Annealing process can diminish oxygen deficiency and inhibit impurity LixNi1−xO. The impurity reduces the specific capacity of product, but it does not have obvious negative effect on cycle performance of product. The capacity of LiNi0.5Mn1.5O4 that contains LixNi1−xO can deliver about 120 mAh g−1.  相似文献   

17.
This study investigates the electrochemical passive properties of AlxCoCrFeNi alloys in H2SO4 by potentiodynamic polarization, EIS, and weight loss tests from 20 to 65 °C. Experimental results indicate that Al harms the corrosion resistance in H2SO4 at temperatures exceeding 27 °C owing to the porous and inferior nature of the protection oxide film of Al in these alloys. Closely examining the Arrhenius plots of corrosion current density reveals that both pre-exponential factor A and activation energy Ea increase with Al content. However, A affects corrosion current density more significantly than Ea at higher temperatures and, conversely, at lower temperatures.  相似文献   

18.
A series of Ni50−xCoxMn32Al18 (x = 3, 4, 5, 6, 7, and 8) alloys were prepared by the arc melting method. The martensitic transformation (MT) shifts to a lower temperature with increasing Co concentration and can be tuned to occur from a ferromagnetic austenite to a weak-magnetic martensite in the range of 6 ≤ x ≤ 8. The field-induced metamagnetic behavior was realized in Ni42Co8Mn32Al18 sample in which a large magnetic entropy change of 7.7 J/kg K and an effective refrigerant capacity value of 112 J/kg were obtained under the field of 60 kOe. The large magnetocaloric effect and adjustable MT temperature suggest that Ni–Co–Mn–Al alloys should have promising potential as magnetic refrigerants.  相似文献   

19.
The effect of Mo addition on the glass-forming ability (GFA), magnetic properties, mechanical properties and corrosion resistance of (Fe0.76Si0.096B0.084P0.06)100−xMox (x = 0, 2, 4 and 6 at.%) bulk glassy alloys (BGAs) with high Fe contents was investigated. The 2 at.% Mo addition makes the alloy composition approach towards a eutectic point, which could result in an increase in the GFA. The BGA rod with diameters up to 3.5 mm was produced by copper mold casting. These BGAs exhibit a rather high saturation magnetization of 0.98-1.51 T and lower coercive force of 1.7-2.1 A/m. A significant improvement in corrosion resistance was observed with microalloying Mo element in 1 N H2SO4 solution. Furthermore, these Fe-based BGAs show super-high strength of ∼3.3 GPa and Young's modulus of 200 GPa.  相似文献   

20.
The high temperature sulphidation behaviour of Fe-46Cr-xSn (x = 0; 0.2; 0.5; 1; 2) alloys has been studied at temperatures of 1073, 1173 and 1273 K in H2/H2S mixtures with different sulphur vapour partial pressures of 10−1, 10−3 and 10−5 Pa. Thermogravimetric studies in combination with scanning electron microscope (SEM), with energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) techniques, have displayed a significant influence of the sulphur partial pressure on the composition and growth rate of the sulphide scale. The results have shown that addition of tin increases the sulphidation rate of Fe-46Cr alloys but not considerably (except at temperatures of 1073 and 1173 K combined with sulphur partial pressure of 10−5 Pa). The metallic core of the studied samples was enriched in tin and iron, moreover tin was found in the internal layer close to the metallic core as metallic FexSny inclusions with tin concentrations of up to 12 at.%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号