首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 79 毫秒
1.
复杂非球面镜高效超精密车削加工法(英文)   总被引:1,自引:0,他引:1  
本文中对复杂面形的非球面镜进行了分类,并从加工方法和加工路径优化设计等方面研究了复杂非球面镜的超精密车削方法.对回转对称的复杂非球面镜进行了加工实验,并借助超精密测量技术对各段曲面进行面形测量,依据测量结果实现面形补偿加工.最终粗糙度Ra达5.14 nm,形状精度P-V值达200 nm.采用提出的方法对非回转对称的非球面阵列进行加工路径设计,根据具体面形进行加工参数选择和实际加工,得到粗糙度Ra为7.81nm的表面.实验结果证明了提出的加工方法高效实用,可以满足大部分复杂非球面的应用需求.  相似文献   

2.
轴对称非球面元件具有优良的光学性能,在现代光学系统中的应用占有越来越大的比例,对其加工质量和加工精度的高要求给光学元器件的制造业带来更大的挑战。针对轴对称非球面的精密磨削加工系统中的金刚石砂轮加工要求,提出了合理的原理方案,给出了合适的加工模型,为平面砂轮加工非球面元件提供了可行的技术方案。  相似文献   

3.
针对目前小口径非球面零件在超精密加工中存在的加工效率和加工精度等问题,分析了现今小口径非球面超精密加工方法及其特点,提出了一种超精密金刚石车削和斜轴磁流变抛光超精密组合加工方法.其中小口径非球面斜轴磁流变抛光方法的特点是抛光主轴采用倾斜安装,并且抛光头由外部旋转抛光体和内部励磁装置两部分构成.通过开发新型的小口径非球面超精密复合加工装备,对小口径单晶硅非球面进行了超精密组合加工实验.实验结果表明工件的表面粗糙度R。由车削后的9.1nm下降到抛光后的3.2mm,证明了该组合加工工艺是提高小口径非球面加工效率和精度的一种有效加工方法.  相似文献   

4.
光学非球曲面器件塑性域的超精密加工方法   总被引:2,自引:0,他引:2  
陈明君 《高技术通讯》2000,10(10):98-99,97
较全面地列举了国内外已实现光学器件非球曲面超精密加工的各种先进方法,并总结出了这些加工方法的优缺点,从这些加工方法中可得出:超精密磨削不仅有较高的磨削效率,而且能获得很高的面形精度和极低的表面粗糙度,它是光学非球曲面器件塑性域超精密加工最为有效的一种方法。  相似文献   

5.
大型非球曲面超精密复合加工机床   总被引:1,自引:0,他引:1  
详细介绍了“大型非球曲面超精密复合加工机床”.该机床具有磨削、铣削、车削等多种加工功能,采用了高精度的FANUC系统,在X横向导轨上设计了独特的卸荷系统,在Z垂直导轨上设计了精确的配重系统,主轴转速为150r/min,可加工最大尺寸为φ1200mm的工件.用高精度的电感测微仪和自准直仪对机床进行了检测,结果表明:其数控系统位置及控制分辨率为0.05μm,主轴回转精度为26nm.最后,用该机床进行了超精密加工试验,经检测,其加工工件的表面粗糙度Ra优于15nm,实现了大型非球曲面的超精密加工.  相似文献   

6.
以正四面体的致密堆积作为金刚石结晶体的几何模型,无法用实验方法得到证实。正四面体的几何性质决定它不能致密充填空间。  相似文献   

7.
刘铁军  汪越胜 《工程力学》2008,25(3):182-187
该文通过应用一种新的分层模型求解了剪切模量任意变化的非均匀土层受轴对称荷载时的表面位移沉降。根据任意曲线都可以用一系列连续的直线段来逼近,非均匀土层被分为若干个子层,在每个子层中,假设剪切模量沿厚度方向按线性变化,在子层的界面上剪切模量连续并且等于实际值。应用Hankel积分变换和传递矩阵方法,求解了剪切模量按照不同函数形式变化的表面沉降。  相似文献   

8.
三维机织结构的几何模型   总被引:11,自引:5,他引:11       下载免费PDF全文
根据三维机织结构中纱线系统的组成和相应纱线的几何形态,建立了具有普适意义的几何模型,获得了组成三维机织结构各纱线系统在一个结构单元内的纱线长度和取向角,进而计算出纤维体积分数。随后,选择了基于11种不同接结组织的三维机织复合材料试样,测试了试样的纤维体积分数,所得的测试结果与模型输出的预测值有很好的一致性。利用所建立的模型还定量讨论了接结组织对纤维体积分数和取向角的影响。结果表明:分层接结可以提供比正交接结高的纤维体积分数;而正交接结中接结经具有较大的取向,有利于增强三维机织复合材料在厚度方向上的力学性能。  相似文献   

9.
LBO晶体的超精密加工工艺研究   总被引:1,自引:0,他引:1  
采用Logitech PM5精密研抛机,通过机械抛光和化学机械抛光方法超精密加工LBO晶体;详细研究了LBO晶体的超精密加工工艺,并观察研磨和抛光等加工过程后的晶体表面形貌;研究抛光液和抛光垫在抛光中对LBO晶体表面微观形貌的影响.使用Wkyo激光干涉仪测量平面度,光学显微镜观察表面宏观损伤,原子力显微镜测量表面粗糙度和观察微观形貌.通过实验,实现高效率、高精度、高质量的LBO晶体的超精密加工,得到了LBO晶体的超精密加工工艺;超精密加工后晶体的表面粗糙度<0.2nm RMS,表面平面度<氇/10(氇=633nm),微观损伤少.  相似文献   

10.
2.5维机织结构复合材料的几何模型   总被引:11,自引:1,他引:10       下载免费PDF全文
基于经纱矩形截面及纬纱双凸透镜截面假设 , 分析了 2. 5 维机织复合材料的细观几何结构 , 重点考虑了该结构表层经纱与内部经纱密度的不同及相同机织结构合成不同厚度和纤维束截面的情况 , 建立了 2. 5 维机织复合材料的单胞几何模型。该几何模型可以计算各种 2. 5 维机织结构单胞内各纱线系统的形态 , 包括取向角和纤维体积分数。通过对 8种结构 28 个试件纤维体积分数的测定 , 与计算预测结果的对比表明本文中建立的几何模型较好地反映了 2. 5维机织复合材料的内部结构。此外 , 利用本模型计算分析了 3 种不同结构的纤维体积分数和取向角。结果表明 : 单胞内经纬纱交织的次数是决定纤维体积含量的一个关键因素 ; 直联结构相比弯联结构 , 其经纱取向角明显降低。   相似文献   

11.
辊子是光学薄膜模压制造的关键零件,其圆柱表面微结构复杂,表面粗糙度要求也极高.超精密车削成形作为微结构的一种高效加工方式,其加工的可达性、伺服刀具动态特性的制约、海量微结构的加工长时一致性等是高质量辊子微结构加工所需解决的关键问题.本文以圆柱球面微结构阵列为例,从其数学描述入手,分析了刀具几何尺寸、伺服系统动态特性与微结构加工可达性之间的制约关系,并在自主研制的超精密车床和快刀伺服系统上进行了两种球面微结构的加工实验,得到了预期的微结构形貌,并对加工实验中发现的切深不一致现象给出了初步的解释.  相似文献   

12.
Machining and metrology systems for free-form laser printer mirrors   总被引:1,自引:0,他引:1  
A major challenge in optics is to make optical components like mirrors and lenses smaller and cheaper. This is achieved by designing optical components that have conformal or free-form shapes. A free-form optic is defined as one that is not symmetrical about any axis. These highly demanding requirements are met by single point diamond machining in rigid ultra precision machine tools.  相似文献   

13.
采用快速刀具伺服技术(FTS)实现了非回转对称三维调制靶模板的精密车削加工.阐明了调制靶模板车削加工的基本原理,并提出一种基于坐标变换的金刚石刀具几何参数选择方法,推导了车削加工此类表面时金刚石刀具刀尖圆弧半径、前角和后角所需满足的条件.基于此提出了一种基于三次Hermite插值的刀尖圆弧半径补偿算法,并详细讨论了插值节点的计算方法.由刀尖圆弧半径补偿仿真结果可以看出,此补偿算法精度优于2 nm.在自行研制的精密金刚石车床上实现了X、Y方向上波长均为100μm、幅值均为0.7μm的正弦网格调制结构的加工.采用白光干涉仪对所加工的调制结构进行测量,并提取二维轮廓进行分析,其轮廓误差为0.31μm,表面粗糙度为13.3 nm.测量结果表明采用基于快速刀具伺服的非回转对称车削是实现三维调制靶模板制作的有效手段.  相似文献   

14.
刀具对中误差对离轴抛物面镜慢刀伺服车削加工的影响   总被引:1,自引:0,他引:1  
离轴抛物面镜单件高效加工是离轴三反消像散(TMA)结构光学系统的技术难点之一.单点金刚石慢刀伺服车削加工技术可用于离轴非球面加工,加工尺寸范围较大,加工精度较高.此工艺制造的离轴抛物面面型精度可达到亚微米级,粗糙度达到纳米级.因此,可直接用于红外光学应用,若经后续抛光则可用于空间望远镜等更高精度需求的场合.介绍了慢刀伺服车削加工离轴抛物面镜的在轴加工方法,理论推导了刀具对中误差所带来的面形误差的极值分布规律.仿真研究进一步揭示了工件中心区域面形误差的详细分布.实验数据与理论结果和仿真计算结果均吻合.  相似文献   

15.
微结构光学元件快速伺服刀架加工技术研究   总被引:6,自引:0,他引:6  
微结构光学元件是一种微小的拓扑元件,通常分为微沟槽列阵、锥形列阵以及微透镜列阵等.这些微结构光学元件能在一些手持装置(例如手机)的平板显示器上得到先进的光学应用.由于产品微型化的需求越来越紧迫,传统的刻蚀方法不再适用于加工高质量的光学微结构产品,为此,提出了一种新型的加工高质量光学微结构元件的技术.该技术以快速伺服刀架加工系统为基础,并结合新开发的刀具轨迹生成器.该刀具路径生成器主要是针对快速伺服刀架加工系统而开发的,它可以根据光学微结构元件的设计直接生成加工所需的刀具轨迹,而不需要进行任何的后续处理.最后,通过加工实例证明了上述加工系统的可行性并得到了符合要求的加工效果.  相似文献   

16.
金刚石涂层超精加工车刀的研制   总被引:9,自引:1,他引:8  
使用热丝CVD法研究了金刚石涂层生长速度、晶粒大小和结合强度与生长工艺参数的关系,在此研究基础上,选择氮化硅材料作为刀具基底材料,并优化生长工艺参数,使热丝CVD法生长金刚石膜的速度提高到20μm/h,膜层平均晶粒度〈1μm,划痕临界载荷达到了50N,然后进行内应力消除及机械研磨、抛光,这样制成的超精加工刀具有来加工铝合金部件。被加工件的表面不平度〈0.1μm,光洁度达到了△↓12,加工光洁度与寿  相似文献   

17.
Fractal Roughness Structure of Diamond-Turned Copper Mirrors   总被引:3,自引:0,他引:3  
Single-point diamond turning of suitable materials (copper, aluminum, and electroless-plated nickel, etc.) can generate high precision mirrors and aspherical optics rapidly and repeatedly. We have examined the diamond-turned copper mirrors that exhibit a high-frequency periodic feature with an atomic force microscope on various scales. Like other super-smooth surfaces, such as super-ground surfaces, single-point-diamond-turned surfaces may also be identified as a self-affine fractal in the stochastic sense with its correlation length. The exponent for root-mean-square roughness was obtained to be 0.28 for a feed rate of 1.4 μm/rev. With this value, we can predict the roughness value of the single-point-diamond-turned copper mirrors at any scale length, if the scale is within the correlation length, and provided that one such value of a scale is known. The roughness exponent is a very useful parameter, knowledge of which helps to improve the quality of the mirror surface and evaluate its performance in optical instruments.  相似文献   

18.
在复杂曲面或功能结构的超精密车削以及主动误差校正车削中,利用快速刀具伺服(FTS)受到了学术界和工程界的广泛关注.然而,无论采用哪一种驱动方式,FTS皆存在难以模型化的迟滞非线性,从而制约了FTS跟踪性能的提高.本文利用分数阶微积分理论,针对压电致动型FTS的迟滞非线性建立了等效的分数阶动力学模型,得到了压电致动型FTS的传递函数.利用一种改进的差分进化算法进行了模型参数的辨识.通过正弦波及三角波信号激励的实验结果表明,针对压电致动型FTS所提出的分数阶模型建模误差小于4%,具有预期的模型精度.本研究为FTS的迟滞非线性建模提供了一种简单有效的新方法,对于提高FTS运动轨迹的跟踪控制性能具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号