首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

2.
The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50–700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.  相似文献   

3.
FePt (20 nm) films were annealed in a magnetic field (along the normal direction of the films) at a temperature around the Curie temperature of L10 FePt. The influence of magnetic filed annealing on texture and magnetic properties of FePt films were investigated. The results indicate that preferential (0 0 1) orientation and perpendicular anisotropy can be obtained in L10 FePt films by using magnetic field annealing around the Curie temperature of L10 FePt. This is one of the potential methods to obtain (0 0 1) orientation and thus to improve the perpendicular anisotropy in FePt films.  相似文献   

4.
Strontium ferrite SrFe12O19 (SrM) thick films have been synthesized using a spinning coating sol–gel process. The coating sol was formed from SrFe12O19 powders dispersed in the strontium ferrite raw sol. XRD, TEM, SEM, vibrating sample magnetometer (VSM) and ac susceptometer were employed to evaluate the structure, composition and magnetic properties of SrFe12O19 thick films. The results indicated that a uniform and crack-free coating of Strontium ferrite with ∼15 μm thickness can be produced with a good deal of consistency. The magnetization hysteresis loops were almost the same for magnetic fields both applied in parallel and perpendicular.  相似文献   

5.
Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.  相似文献   

6.
Strontium hexaferrite SrFe12O19 thin films have been synthesized at different pH, adjusted by NH4OH, on the Si (1 0 0) substrate using a spin coating sol-gel process. Fourier transform infrared spectroscopy analysis and theoretical calculations were conducted for determination and controlling metal citrates in solution precursors. X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer were applied to evaluate the composition, microstructure, crystallite size and magnetic properties of the SrFe12O19 thin films. Using the solution with pH 7, the approximately single phase strontium hexaferrite thin films with optimum physical properties can be obtained at calcination temperature of 800 °C. The SrFe12O19 thin films derived from the solution with pH 7 after calcination at 800 °C exhibited crystallite size of 42 nm and magnetic properties of Ms=267 emu/cm3 (at 10 kOe), Mr=134 emu/cm3 and Hc=4290 Oe.  相似文献   

7.
The (γ′-Fe4N/Si-N)n (n: number of layers) multilayer films and γ′-Fe4N single layer film synthesized on Si (1 0 0) substrates by direct current magnetron sputtering were annealed at different temperatures. The structures and magnetic properties of as-deposited films and films annealed at different temperatures were characterized using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The results showed that the insertion of Si-N layer had a significant influence on the structures and magnetic properties of γ′-Fe4N film. Without the addition of Si-N lamination, the iron nitride γ′-Fe4N tended to transform to α-Fe when annealed at the temperatures over 300 °C. However, the phase transition from γ′-Fe4N to ?-Fe3N occurred at annealing temperature of 300 °C for the multilayer films. Furthermore, with increasing annealing temperature up to 400 °C or above, ?-Fe3N transformed back into γ′-Fe4N. The magnetic investigations indicated that coercivity of magnetic phase γ′-Fe4N for as-deposited films decreased from 152 Oe (for single layer) to 57.23 Oe with increasing n up to 30. For the annealed multilayer films, the coercivity values decreased with increasing annealing temperature, except that the film annealed at 300 °C due to the appearance of phase ?-Fe3N.  相似文献   

8.
SrFe12−x(Sn0.5Zn0.5)xO19 thin films with x=0−5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). The site preference and magnetic properties of Zn-Sn substituted strontium ferrite thin films were studied using 57Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra displayed that the Zn-Sn ions preferentially occupy the 2b and 4f2 sites. The preference for these sites is responsible for the anomalous increase in the magnetization at high Zn-Sn substitutions. X-ray diffraction (XRD) patterns and field emission scanning electron microscope (FE-SEM) micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. Vibrating sample magnetometer (VSM) was employed to probe magnetic properties of samples. The maximum saturation of magnetization and coercivity at perpendicular direction were 265 emu/g and 6.3 kOe, respectively. It was found that the complex susceptibility has linear variation with static magnetic field.  相似文献   

9.
Nanostructured single phase strontium hexaferrite, SrFe12O19, thin films have been synthesized on the (100) silicon substrate using a spin coating sol–gel process. The thin films with various Fe/Sr molar ratios of 8–12 were calcined at different temperatures from 500 to 900 °C. The composition, microstructure and magnetic properties of the SrFe12O19 thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 °C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm3) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios.  相似文献   

10.
M-type strontium hexaferrite (SrFe12O19) particles had been prepared by a modified chemical co-precipitation route. Structural and magnetic properties were systematically investigated. Rietveld refinement of X-ray powder diffraction results showed that the sample was single-phase with the space group of P63/mmc and cell parameter values of a=5.8751 Å and c=23.0395 Å. The results of field-emission scanning electronic microscopy showed that the grains were regular hexagonal platelets with sizes from 2 to 4 μm. The composition determined by energy dispersive spectroscopy is the stoichiometry of SrFe12O19. The ferrimagnetic to paramagnetic transition was sharp with Curie temperature TC=737 K, which further confirmed that the samples were single phase. However, it was found that the coercivity, saturation magnetization and the squareness ratio of the synthesized SrFe12O19 samples were lower than the theoretical values, which could be explained by the multi-domain structure and the increase of the demagnetizing factor.  相似文献   

11.
Mn-Zn ferrite powders (Mn0.5Zn0.5Fe2O4) were prepared by the nitrate-citrate auto-combustion method and subsequently annealed in air or argon. The effects of heat treatment temperature on crystalline phases formation, microstructure and magnetic properties of Mn-Zn ferrite were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and vibrating sample magnetometer. Ferrites decomposed to Fe2O3 and Mn2O3 after annealing above 550 °C in air, and had poor magnetic properties. However, Fe2O3 and Mn2O3 were dissolved after ferrites annealing above 1100 °C. Moreover, the 1200 °C annealed sample showed pure ferrite phase, larger saturation magnetization (Ms=48.15 emu g−1) and lower coercivity (Hc=51 Oe) compared with the auto-combusted ferrite powder (Ms=44.32 emu g−1, Hc=70 Oe). The 600 °C air annealed sample had the largest saturation magnetization (Ms=56.37 emu g−1) and the lowest coercivity (Hc=32 Oe) due to the presence of pure ferrite spinel phase, its microstructure and crystalline size.  相似文献   

12.
The dielectric properties of MgO-Ta2O5 continuous composition spread (CCS) thin films were investigated. The MgO-Ta2O5 CCS thin films were deposited on Pt/Ti/SiO2/Si substrates by off-Axis RF magnetron sputtering system, and then the films were annealed at 350 °C with rapid thermal annealing system in vacuum. The dielectric constant and loss of MgO-Ta2O5 CCS thin films were plotted via 1500 micron-step measuring. The specific point of Ta2O5-MgO CCS thin film (post annealed at 350 °C) showing superior dielectric properties of high dielectric constant (k ∼ 28) and low dielectric loss (tan δ < 0⋅004) at 1 MHz were found in the area of 3-5 mm apart from Ta2O5 side on the substrate. The cation's composition of thin film was Mg:Ta = 0.4:2 at%.  相似文献   

13.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

14.
The structure, magnetic properties and magnetostriction of Fe81Ga19 thin films have been investigated by using X-ray diffraction analysis, scanning electron microscope (SEM), vibrating sample magnetometer and capacitive cantilever method. It was found that the grain size of as-deposited Fe81Ga19 thin films is 50–60 nm and the grain size increases with increase in the annealing temperature. The remanence ratio (Mr/Ms) of the thin films slowly decreases with increase in the annealing temperature. However, the coercivity of the thin films goes the opposite way with increase in the annealing temperature. A preferential orientation of the Fe81Ga19 thin film fabricated under an applied magnetic field exists along 〈1 0 0〉 direction due to the function of magnetic field during sputtering. An in-plane-induced anisotropy of the thin film is well formed by the applied magnetic field during the sputtering and the formation of in-plane-induced anisotropy results in 90° rotations of the magnetic domains during magnetization and in the increase of magnetostriction for the thin film.  相似文献   

15.
The structural and magnetic properties of ∼12 nm thick FePt thin films grown on Si substrates annealed using a 1064 nm wavelength laser with a 10 ms pulse have been examined. The A1 to L10 ordering phase transformation was confirmed by electron and X-ray diffraction. An order parameter near 50% and a maximum coercivity of 12 kOe were obtained with laser energy densities of 25-32 J/cm2. Grain growth, quantified by dark field transmission electron microscopy, occurred during chemical ordering at the laser pulse widths studied.  相似文献   

16.
The preparation of ZnSn-substituted barium ferrite films by sputtering deposition was studied. The as-sputtered films were amorphous, and annealing at a minimum of 750 °C was required to crystallize the films, based on the X-ray diffraction analysis and the magnetic measurements. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopic microanalysis confirmed that the films were single phase with the composition BaZnxSnxFe12−2xO19, x=0.2−0.3, and their thicknesses were 0.4-1.0 μm when annealed at 750-900 °C. Atomic and magnetic force microscopy studies showed no significant grain growth upon annealing and that the films consisted of single-domain grains forming interaction-cluster-type domains. The natural ferromagnetic resonance frequency was determined at around 4 GHz, together with substantial magnetic losses that make these films promising candidates for microwave absorbers.  相似文献   

17.
A series of 20 and 100 nm Fe53Pt47 thin films sputter-deposited onto Si substrates have been thermally annealed using a pulsed thermal plasma arc lamp. A series of one, three or five pulses were applied to the thin films with widths of either 50 or 100 ms. The microstructure and magnetic properties of these annealed Fe53Pt47 films are discussed according to the various annealing conditions and A1 to L10 phase transformation. Upon pulse annealing, the average in-plane grain size of 15 nm (nearly equivalent for both film thicknesses) was observed to increase to values near 20 nm. In general, increasing the pulse width or number of pulses increased the L10 order parameter, tetragonality of the c/a ratio and coercivity of the specimen. The exception to this trend was for five pulses at 100 ms for both film thicknesses, which indicated a reduction of the order parameter and coercivity. This reduction is believed to be a result of the interdiffusion of Fe and Pt into the Si substrate and the formation of iron oxide clusters in the grain boundaries characterized by atom probe tomography.  相似文献   

18.
Strontium ferrite (SrM) thin films deposited on thermally oxidized silicon wafer (SiO2/Si) and single crystal sapphire with (0 0 l) orientation (Al2O3(0 0 l)) substrate using Pt underlayer were prepared by DC magnetron sputtering system. It was found that the intensity of (1 1 1) line for Pt and that of (0 0 l) diffraction line for SrM increases with increasing substrate temperature, Tu. The c-axis dispersion angle, Δθ50, of SrM(0 0 8) depends on that of Pt underlayer. Both dispersion angle of Pt(1 1 1) and SrM(0 0 8) decrease with increasing temperature. It was observed that the saturation magnetization of SrM/Pt deposited on SiO2/Si is higher than that of Al2O3 substrate. The coercivity and remanent squareness ratio in perpendicular direction are higher than that in in-plane direction. The maximum of coercivity in perpendicular direction of SrM/Pt films deposited on single crystal Al2O3 is about 4.2 kOe.  相似文献   

19.
We have investigated the influence of composition and annealing conditions on the magnetic properties and microstructural features of SmCox films that were prepared by sputtering and subsequent annealing. A huge in-plane coercivity of 5.6 T was obtained from an optimally annealed Sm–Co film, which was attributed to the nanometer sized polycrystalline microstructure of the highly anisotropic SmCo5 phase. Although a high density of planar defects were observed in the films that were annealed at high temperatures, they did not act as strong pinning sites for domain wall motion. The effect of Cu on [SmCo4.5(9 nm)/Cu(xnm)]10 multilayer thin films was also studied. An appropriate Cu content increased the coercivity.  相似文献   

20.
FePt (20 nm) films with AgCu (20 nm) underlayer were prepared on thermally oxidized Si (0 0 1) substrates at room temperature by using dc magnetron sputtering, and the films annealed at different temperature to examine the disorder–order transformation of the FePt films. It is found that the ordered L10 FePt phase can form at low annealing temperature. Even after annealing at 300 °C, the in-plane coercivity of 5.2 kOe can be obtained in the film. With increase in annealing temperature, both the ordering degree and coercivity of the films increase. The low-temperature ordering of the films may result from the dynamic stress produced by phase separation in AgCu underlayer and Cu diffusion into FePt phase during annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号