首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用MICAPS资料、NCEP1°×1°逐6 h再分析数据以及FY-2G卫星、安康雷达探测等资料,对2019年6月2日发生在秦巴山区的一次罕见雷暴大风天气进行成因综合分析。结果表明:2日陕南中东部地区存在有利于强对流风暴发生和发展的热力不稳定条件;地面图上,傍晚前后从关中向陕南发展移动的冷池触发了本次雷暴大风天气;过程发生时,云图上中尺度对流系统云系逐渐东移南压,云顶亮温梯度最大区域和地面冷池前方辐合线位置基本一致;雷暴大风发生时低层雷达速度图上有显著的大风速核、明显的中层径向辐合和低层辐散及其雷达强回波质心的下降,这些都为雷暴大风天气的预报预警提供了一定的指示。  相似文献   

2.
中国强雷暴大风的气候特征和环境参数分析   总被引:3,自引:3,他引:3  
费海燕  王秀明  周小刚  俞小鼎 《气象》2016,42(12):1513-1521
对2004—2013年中国强雷暴大风记录(风速≥25 m·s~(-1))的气候特征和环境参数进行统计分析研究。结果表明:强雷暴大风主要发生在中国中东部地区,从3月开始在西南、华南地区出现,4月北进入华中、华东地区,5月北进到华北、东北和西北地区。不同地区强雷暴大风发生峰值时间不同,其中华中和华南有两个峰值。中国强雷暴大风环境参数中低层垂直风切变中等(地面至700hPa和地面至500 hPa平均值分别为10.2和14.3 m·s~(-1)),明显低于美国大范围雷暴大风的均值;存在明显的干层,一般表现为500 hPa附近的中层温度露点差大于10℃C以上,其中华北、西北地区表现为整层3~7 km均较干。根据红外卫星云图的观测特征,强雷暴大风发生时云型最多的是团状,其次是线状,还有一些不规则形状的云型,不同地区主导云型不同。分析我国强雷暴大风多发地华东地区三种云型的环境参数表明:团状云型强雷暴大风的CAPE值大,低层高湿,中层干且环境温度直减率大;线状云型其热力参数值均较团状云型小,但低层和深层垂直风切变大,整层均较干;不规则云型低层高温高湿,环境风垂直切变较小。  相似文献   

3.
天津地区雷暴大风天气雷达产品特征分析   总被引:5,自引:4,他引:1  
王彦  唐熠  赵金霞  刘广涛  赵刚 《气象》2009,35(5):91-96
应用2002-2007年天津共46次雷暴大风天气过程的新一代天气雷达资料,并结合灾情报告和地面自动气象站资料,根据雷达基本反射率回波特征,影响渤海西部雷暴大风的雷达回波形态有以下四种类型:弓状回波、阵风锋、带状回波和零散椭圆状回波,其中弓状回波对应的雷暴大风天气最为强烈,特别是弓状回波的前部和顶端突起部分;同时弓状回波主体维持时间与雷暴大风维持时间基本一致.另外,应用垂直积分液态水含量产品(VIL)进行了统计分析.结果表明:当VIL值达到或超过40 kg·m~(-2)时,随后VIL值的快速减小对于预警雷暴大风天气有指示意义,这种信息一般能够提前10分钟出现.此外,分析了雷暴大风的路径来源有四类:分别是北方路径有9次,西北路径占19次,西方路径14次和其他路径4次,其中北方路径带来的灾害相对严重.这些特征对预警渤海西部雷暴大风天气提供使用价值,同时也可提供其他地区参考使用.  相似文献   

4.
利用加密自动站、闪电定位仪、FNL和多普勒雷达资料对2018—2020年汛期(4—9月)天津地区出现的47次雷暴大风过程的时空分布、天气形势和雷达回波特征进行统计分析。结果表明:(1)天津地区雷暴大风多出现在北部山区和东部沿海,高发月份为6—8月,多出现在傍晚到前半夜,持续时间多为1~4 h;(2)天津地区雷暴大风的天气形势主要有西北气流型、冷涡型、低槽型和西太平洋副热带高压边缘型,其中冷涡型出现频次最高;(3)造成天津地区雷暴大风的对流风暴类型主要有非线状多单体风暴、线状多单体风暴(不包含飑线)、飑线、弓形回波和普通单体风暴,其中飑线数量最多,飑线和弓形回波是造成雷暴大风极端值的主要风暴类型;(4)当最大反射率因子为61 dBZ、强回波中心下降率为260 m·min-1上下时发生雷暴大风的可能性最高;(5)根据低层径向速度大值区,可对15.4%的非线状多单体风暴、14.3%的线状多单体风暴和22.2%的飑线雷暴大风提前30 min发布预警。  相似文献   

5.
利用2016-2021年重要天气报、雷暴观测资料等,统计分析出贵州铜仁雷暴大风的时空分布的特征分析,并对其环流形势及离铜仁较近的怀化站探空特征进行分类分型,结果表明:贵州铜仁雷暴大风主要出现在3月至9月,5月发生次数最多,年均12.5站次,高频时段出现在14时—23时,峰值在22时(北京时,下同);总体呈现“北多南少、东多西少”的分布特征,且主要以单站雷暴大风天气为主。根据天气形势配置将其分为以下4类:斜压锋生类、低层暖平流强迫类、准正压类和高层冷平流强迫类。其中低层暖平流强迫类根据中低层切变线北侧冷平流的强弱又可以分为:强冷暖平流强迫类、强暖平流强迫类和中间类。总结归纳各类雷暴大风过程的天气环流形势配置及垂直分布特征,可为短期天气预报预警提供参考。  相似文献   

6.
《湖北气象》2021,40(4)
使用MICAPS地面气象观测资料和探空资料,对山东省2009—2016年4—9月产生的雷暴大风以500 hPa天气系统为主进行分型,并以低层(850 hPa)中尺度天气系统和地面天气系统为辅对各型雷暴大风进行分类。然后,采用百分位数法统计分析各型雷暴大风发生时的物理诊断量,并给出各物理诊断量的临界值。结果表明:(1)基于500 hPa天气影响系统配置,山东省雷暴大风分为槽前型、槽后型和副高边缘型,再根据雷暴大风落区与850 hPa天气系统的位置关系,又分为切变线辐合类、偏南气流辐合类和偏北气流辐合类3种类型,而根据海平面气压场中天气系统与雷暴大风的位置关系,则将产生雷暴大风的地面天气系统主要归纳为6种类型。(2)将山东省划分为内陆地区和半岛地区,4—6月内陆地区雷暴大风的适用物理诊断量为850 hPa与500 hPa温差(DT_(850-500))、500 hPa与850 hPa风速差(DV_(500-850))、风暴强度指数(SSI)和大风指数(WI),半岛地区代表大气热力和动力综合特征的物理诊断量SSI和WI对雷暴大风的指示性较好。(3) 7—8月山东全省,代表大气热力不稳定的物理诊断量即对流有效位能(CAPE)、K指数、抬升指数(LI)、700 hPa与850 hPa假相当位温差(Dθ_(se700-850))、强天气威胁指数(SWEAT),对雷暴大风有较好的指示性。(4) 9月山东省雷暴大风主要发生在半岛地区,Dθ_(se700-850)、SSI、SWEAT和DV_(500-850)对雷暴大风具有较好的指示性。  相似文献   

7.

利用海南岛区域加密自动站资料和海口站探空资料,结合ERA-Interim再分析资料对2014—2018年海南岛雷暴大风的强度、时空分布、环流形势和物理量参数特征进行分析研究。结果表明:(1) 海南岛雷暴大风主要出现在5—8月的午后到傍晚时段,最大阵风风速大部分在8级及以上。(2) 雷暴大风的环流形势可以分为三类,即西南热低压型、季风槽型和冷锋型,其中季风槽型根据槽线位置可以分为华南沿海槽型和南海低压槽型。(3) 西南热低压型雷暴大风的大气不稳定能量最大,上干下湿,垂直风切变较小;冷锋型的大气不稳定能量最小,上干下湿,垂直风切变最大;季风槽型的大气不稳定能量较大,整层较湿,垂直风切变最小。(4) 季风槽天气形势下发生雷暴大风时,较容易伴随短时强降水天气,西南热低压型的雷暴大风风力比其他类型更大。

  相似文献   

8.
利用常规观测资料、加密自动站资料、自动站5 min资料、天气雷达资料和风廓线雷达组网资料,对2017年7月27日夜间出现在成都地区的一次雷暴大风天气过程进行分析,结果表明:本次过程发生在副热带高压和切变线共同影响下,地面辐合线、弱垂直风切变、层结不稳定和较大的对流有效位能为雷暴大风的发生提供了有利的环境条件。此次雷暴大风天气过程是由多单体风暴产生的;雷达回波具有窄带回波、反射率因子质心快速下降、风暴前侧出流、后侧入流和中层径向辐合等特征,这些特征对监测和预警雷暴大风有很好的指示意义。雷暴高压和强冷中心对雷暴大风的形成和维持有着重要作用。在大风过程中,风向突变伴有瞬时风速增大,但风向突变出现时间较最大瞬时风速出现提前了5 min左右,中尺度气旋式辐合的出现时间较最大瞬时风速有15 min的提前量。阵风锋坡度愈大,前侧上升气流坡度愈大;阵风锋后部的垂直风速变化落后于水平风速的变化。  相似文献   

9.
华南雷暴大风天气的环境条件分布特征   总被引:2,自引:1,他引:2  
杨新林  孙建华  鲁蓉  张弦 《气象》2017,43(7):769-780
利用中国气象局提供的观测资料研究了2010—2014年华南雷暴大风和普通雷暴的空间分布特征,并将华南春夏两季雷暴大风和普通雷暴的大尺度环境条件进行对比。结果表明:研究的华南区域08—20时(北京时)夏季雷暴大风略多于春季,而普通雷暴夏季样本数约为春季的3.6倍,雷暴大风主要发生在粤西到珠江三角洲地区。相比于普通雷暴,雷暴大风天气发生的环境条件具有更强的条件性不稳定,斜压性和动力强迫更强。春季雷暴大风发生时环境中的大气可降水量和中高层湿度均比普通雷暴更大,而夏季反之。华南春季雷暴动力条件明显优于夏季,而夏季热力强迫的作用大于春季。  相似文献   

10.
山东省雷暴大风天气的气候特征   总被引:1,自引:0,他引:1  
应用1971-2008年山东省122个气象站观测资料,对山东省雷暴大风等强对流天气的气候特征进行了分析,并与冰雹天气的气候特征进行了对比。结果表明:山东省雷暴大风年均为46.6d,区域性雷暴大风年均为15.7d,随年代有明显减少的趋势。山东的雷暴大风主要集中在5—8月,7月最多。雷暴大风的地理分布极不均匀,大部分地区年均在l~3d。雷暴大风的影响范围较大,最多可达87个测站。雷暴大风的极大风力一般在8—9级,最大可达12级,极大风速的风向以西北风最多,但在7月以西南大风最多。雷暴大风与冰雹相比,二者出现月份和影响范围有明显差异,冰雹主要集中在4—6月,冰雹影响的范围远小于雷暴大风。  相似文献   

11.
湖北东部雷暴大风雷达回波特征分析   总被引:6,自引:1,他引:6  
通过对2003-2009年湖北省东部26个雷暴大风过程的雷达、地面、高空、NCEP6h再分析场等资料的研究,依据雷达回波形态特征,将造成雷暴大风的雷达回波分为3种类型,即单体型、弓状型和飑线型。统计分析了每种类型雷达回波强度、回波顶高、垂直液态含水量、中层辐合特征、入流急流、中气旋及环境场条件等特征,研究了这3种雷暴大风天气的雷达回波生命史演变规律,并建立了其雷达回波概念模型。分析表明,单体型雷暴大风提前预警难度较大,但对弓状型和飑线型雷暴大风多数可以提前30min左右做出预警。  相似文献   

12.

采用2007-2015年5-8月NCEP再分析资料和国家站、区域站雷暴大风实况观测资料,利用权重和概率统计相结合的方法,确定与雷暴大风联系紧密的物理量,统计其在所选物理量不同阈值范围内出现的概率,建立雷暴大风概率潜势预报方程,并对预报结果进行检验。结果表明:(1)雷暴大风出现在白天与夜间所选物理量参数有所不同。无论白天或夜间,其在山区与其它地区的物理量阈值亦不同。(2)所选每个预报因子的概率统计结果与雷暴大风发生的环境条件基本相符,该概率由因子达到阈值范围内的样本数和在此区间内出现雷暴大风的样本数两者共同决定的。(3)该方法对08-20时和20-08时两个时段雷暴大风预报的命中率均较好,尤其2016年7月最高,预报概率为\  相似文献   


13.
使用MICAPS天气资料和探空资料,对哈尔滨市2016-2020年5-9月产生的雷暴大风天气以500 hPa天气系统为主进行分型,并统计低层影响系统和地面天气系统出现的比率。然后利用NCEP资料计算各个雷暴大风天气发生前的环境参量,并采用百分位数法统计各型发生时的物理量,以25%分位数为阈值给出临界值。结果表明:(1)哈尔滨市雷暴大风天气分为冷涡型、槽前型和西北气流型。(2)850 hPa与500 hPa温度差≥24℃,CAPE值≥310 J/kg,0-6 km垂直风切变≥10 m/s,地面露点温度≥12℃对于哈尔滨市雷暴大风天气有良好的指示意义。(3)槽前型雷暴大风天气的850 hPa与500 hPa温度差最小,西北气流型个例中高CAPE值并不多;水汽条件并不是制约冷涡型雷暴大风天气发生的重要因素。  相似文献   

14.
利用海南岛区域加密自动站资料和海口站探空资料,结合ERA-Interim再分析资料对2014-2018年海南岛雷暴大风的强度、时空分布、环流形势和物理量参数特征进行分析研究。结果表明:(1)海南岛雷暴大风主要出现在5-8月的午后到傍晚时段,最大阵风风速大部分在8级及以上。(2)雷暴大风的环流形势可以分为三类,即西南热低压型、季风槽型和冷锋型,其中季风槽型根据槽线位置可以分为华南沿海槽型和南海低压槽型。(3)西南热低压型雷暴大风的大气不稳定能量最大,上干下湿,垂直风切变较小;冷锋型的大气不稳定能量最小,上干下湿,垂直风切变最大;季风槽型的大气不稳定能量较大,整层较湿,垂直风切变最小。(4)季风槽天气形势下发生雷暴大风时,较容易伴随短时强降水天气,西南热低压型的雷暴大风风力比其他类型更大。  相似文献   

15.
北京雷暴大风日环境特征分析   总被引:10,自引:2,他引:10  
雷暴大风是指由对流活动带来的除龙卷以外的地面灾害性强阵风。根据北京地区21个观测站2000~2007年的观测资料,将出现在该期间的雷暴大风按强阵风出现时降水量的大小划分为干、湿两种类型,探讨了两类雷暴大风日环境大气的热力稳定度条件、环境风垂直分布及演变等特征。结果表明,绝大多数干型雷暴大风产生在对流有效位能较小但对流层中低层环境风垂直切变却比较大的环境中,因此反映热力不稳定性的对流参数在干型雷暴大风的预报中具有一定的局限性,给对流初生的预报带来了一定难度。而湿型雷暴大风则多发生在热力不稳定的条件下。两种类型雷暴大风日环境大气温湿廓线有较大差别是造成热力不稳定性不同的原因之一。因此在预报雷暴大风时,除了环境大气的热力不稳定性外,还应考察环境风垂直切变等因素。下沉气流的热力稳定性和对流层中下层环境风速的演变是判断对流活动能否给地面带来短时强阵风的两个重要因素。下沉对流有效位能(DCAPE)的分析结果表明,多数雷暴大风日临近时刻的下沉对流有效位能大于600 J·kg-1,而且86%的干型个例和59%的湿型个例在地面大风出现前DCAPE呈现增加的趋势,这对雷暴大风特别是干型雷暴大风的潜势预报具有一定的意义。在雷暴大风来临前,抬升凝结高度以下的环境温度直减率明显增加,这种演变趋势也可为临近预报提供有用的信息。此外,风廓线仪观测资料是对常规探空的有效补充。分析表明,有一些雷暴大风的产生与高空水平动量下传有关。在雷暴大风出现前,高空环境风陡增,具有较高数值的等风速线连续下落,在雷暴大风产生时到达地面。有效地使用风廓线仪观测资料,将有利于提高雷暴大风的临近预报和预警水平。    相似文献   

16.
基于模糊逻辑的雷暴大风和非雷暴大风区分方法   总被引:2,自引:4,他引:2  
周康辉  郑永光  王婷波  蓝渝  林建 《气象》2017,43(7):781-791
雷暴大风往往伴随飑线、阵风锋、龙卷等强对流天气而出现,风速大、发展迅速、突发性强,对生命财产安全造成极大威胁,因此对雷暴大风的监测与预报具有重要的意义。然而,雷暴大风监测一直也是强对流监测的难点。本文在地面气象观测站大风记录的基础上,结合多源数据(包括雷达、卫星、闪电、温度、露点等观测数据),利用模糊逻辑算法,实现雷暴大风与非雷暴大风的有效识别,可对雷暴大风进行实时监测。具体算法为:首先,基于历史样本数据的统计得到各变量的概率分布函数,进而得到各参数隶属度函数;然后采用概率重叠面积方法,确定各项质量控制数据的权重;最后通过选取判断概率阈值Q的方法,区分雷暴大风与非雷暴大风。通过对2010年全国50873条人工观测大风数据的识别结果检验表明,该算法能有效区分雷暴大风与非雷暴大风,当Q选取0.55时,雷暴大风的识别准确率POD约为0.76,误识别率约为0.18,雷暴大风CSI指数约为0.67。文中选取了两次大风过程,算法正确地识别了11个非雷暴大风记录,5个雷暴大风记录。本工作能一定程度上提升雷暴大风的监测效果、完善强对流监测业务体系。  相似文献   

17.
北京地区雷暴大风的天气-气候学特征研究   总被引:13,自引:2,他引:11  
依据北京近郊地区沙河、南苑和西郊3个测站15年(1990~2004年)的观测资料和常规探空资料,对北京地区局地雷暴大风发生的天气、气候特征和日变化特征进行了统计分析。研究从环流形势、探空结构和环境参数特征入手,分析了有利于北京地区产生雷暴大风的不稳定度指数和能量特征,得出在此期间最有利于雷暴大风产生的探空结构为:低层暖湿,中高层有干冷空气,不稳定度较大,风垂直切变较大。还探讨了一些对流参数,如最佳对流有效位能BCAPE、下沉对流有效位能DCAPE、风暴相对螺旋度SREH、大风指数WINDEX、风暴强度指数SSI、深厚对流指数DCI等对北京地区强对流天气发展潜势的指示意义。  相似文献   

18.
文章利用自动气象站资料、ERA5 0.25°×0.25°再分析资料、卫星云图和多普勒天气雷达观测资料等对2020年8月1日呼伦贝尔市中西部一次雷暴、大风强对流天气过程进行综合分析。结果表明:本次雷暴、大风天气过程是贝加尔湖冷涡和地面中尺度辐合线共同作用下产生的。中低层较大的垂直温度递减率为对流天气的产生提供了不稳定环境条件;地面中尺度辐合线提供了触发条件;08时海拉尔探空曲线上干冷、下暖湿的“喇叭状”特征是雷暴、大风产生的层结条件;中等强度的垂直风切变有利于对流系统的组织化发展。多个中尺度对流云团发展、移动、合并成MCC,TBB的低值区对雷暴、大风发生的位置具有指示意义;水汽图像表征水汽带北侧有暗区触发对流。满洲里和海拉尔天气雷达反射率因子产品呈现多个对流单体不断生成、合并、增强且自西南向东北移动的过程,在回波演变发展过程中出现了有组织性的带状回波,利于强对流天气的发生;径向速度大值区持续时间较长,并出现明显速度模糊和“逆风区”现象,低空大风动量下传作用造成了对流系统所经之处的地面大风;海拉尔天气雷达反射率因子剖面上多个发展强盛且竖直的对流单体横向排列,在径向速度剖面上对流层中层存在径...  相似文献   

19.
何志强  卢新平  王丙兰 《气象》2014,40(11):1408-1413
雷暴大风是航空飞行的主要威胁之一。气象预报员预报雷暴引发的突如其来的短时强阵风难度较大。文章把McCann提出的WINDEX经验方程应用在首都机场地区,利用2006—2010年54511台站的探空资料计算经验指数WINDEX,并与首都机场地区雷暴引发的强阵风进行了对比分析。建立了雷暴强阵风的预报工作程序。  相似文献   

20.
极端雷暴大风的环境参量特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究极端雷暴大风天气环境要素特点,选取2002—2017年中国各地区极端雷暴大风个例95个和不伴随强对流的普通雷暴个例95个,通过两者间关键环境参数的对比,揭示极端雷暴大风事件的关键环境参数特征。结果表明:极端雷暴大风天气发生在对流层中层相对干的环境下,表现为400~700 hPa极端雷暴大风对应的单层最大温度露点差和平均温度露点差平均值分别为25.7℃和13.6℃,而普通雷暴的相应值分别为16.2℃和6.5℃。统计结果表明:尽管产生极端雷暴大风的对流风暴和普通雷达对应的地面露点差异并不大,但前者相应的大气可降水量(平均值为37 mm)明显低于后者(平均值为51 mm),差异突出表现在两者湿层厚度的不同上;相对于普通雷暴事件,极端雷暴大风事件对应的对流有效位能值(平均值为1820 J·kg-1)明显高于普通雷暴事件的对应值(平均值为470 J·kg-1);此外,极端雷暴大风事件对应的对流层中下层垂直温度递减率、下沉有效位能、夹卷层平均风速和0~6 km,0~3 km垂直风切变均明显大于普通雷暴事件对应的相应值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号