首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
综述了聚合物脆韧转变的几种判据,其中着重介绍了Bucknall判据、临界基体层厚度判据、损伤竞争准数判据、分子链参数判据、临界黏结条件判据等。而且结合聚合物脆韧转变判据,分析了基体性质、分散相形态、界面黏结强度以及外界因素对聚合物脆韧性的影响,并指出了结合各因素的影响综合考虑聚合物脆韧转变判据的研究方向。  相似文献   

2.
综述了近些年来无机刚性粒子增韧聚丙烯(PP)的结构设计、刚性粒子粒径及其分布、改性剂种类及用量对增韧增强效果的影响以及无机刚性粒子增韧PP的机理。大量的研究表明,在刚性粒子增韧PP中,弹性体包覆刚性粒子的壳一核结构设计具有优异的增韧效果。在定量分析PP增韧机理方面,介绍了脆韧转变分析中界面黏结判据和粒间距判据,以及有限元方法在此领域的应用,刚性粒子增韧机理主要为界面脱黏到空洞/银纹化损伤和空洞/剪切屈服损伤的转变。此外还介绍了目前刚性粒子与橡胶混杂增韧PP的研究进展。  相似文献   

3.
综述了硬质无机粒子(RIP)填充聚丙烯(PP)复合材料的増韧机理及其定量判据。大量的研究表明,最典型的增韧机理有逾渗模型理论、银纹化微观增韧机理和柔性界面层理论。在定量分析RIP填充PP复合材料的增强机理方面,主要阐述了两种判据:基体层厚度判据和界面黏结强度判据;并利用所述判据分析了相关文献的数据,得出了如下结论:当RIP平均粒径d临界粒径dc,体积分数Φf临界体积分数Φf C,或平均基体层厚度L临界基体层厚度Lc;界面相互作用参数B值在[1,2.6]之间时,RIP增强填充PP复合材料的韧性的机会较大。  相似文献   

4.
研究了PP/POE/纳米CaCO3复合材料的力学性能、脆-韧转变规律及其与纳米CaCO3含量、分散相POE粒径的关系。结果表明:含4份CaCO3的PP/POE/纳米CaCO3复合体系,达到脆-韧转变所需的弹性体POE量最少。纳米CaCO3的添加还可以提高复合材料的弯曲模量,在增韧的同时提高材料的刚性。研究发现PP/POE/纳米CaCO3三元体系的基体层厚度与脆-韧转变的关系符合逾渗定理。  相似文献   

5.
脆性塑料PS对PVC的增韧   总被引:5,自引:0,他引:5  
王建民  侯斌 《塑料工业》1997,25(6):92-94
研究了脆性塑料PS及PS/PMMA(核-壳型粒子)对PVC基体的增韧。讨论了基体韧性、分散相含量、相界面的影响。结果表明,(1)PS能提高未增韧PVC体系的冲击强度,但导致屈服应力下降;(2)冲击强度随PS含量的改变有一极大值,提示与弹性体改性有不同的增韧机理;(3)对PVC基体进行预增韧能显著提高PS的增韧作用,但未改变增韧机理;(4)分散相与基体界面作用力对整个复合体系的性能影响很大,但对冲击强度来说,并非相间作用力越大越好;(5)空穴的存在表明,在脆性塑料增韧体系中,并不一定都如Korauchi提出的“冷拉机理”,有可能存在“空穴增韧”机理。  相似文献   

6.
MBS对聚碳酸酯的增韧作用及其增韧机理的探讨   总被引:3,自引:0,他引:3  
研究了甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)对光盘级聚碳酸酯的增韧作用。结果表明,MBS对PC增韧效果显著,且MBS分散性越好,根据逾渗理论,达到脆一韧转变时所需的MBS含量越少。求得达到脆-韧转变时的临界粒间距为50nm。对共混物损伤机制的研究表明,MBS增韧PC共混物的增韧机理为MBS粒子的空洞化引发基体的剪切屈服。  相似文献   

7.
研究了甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)对光盘级聚碳酸酯的增韧作用,结果表明,MBS对PC增韧效果显著,且MBS分散性越好,达到晚一韧转变时所需的MBS含量越少,求得达到脆-韧转变时的临界粒间距为50nm,对共混物损伤机制的研究表明,MBS增韧PC共混物的增韧机理为MBS粒子的空洞化引发基体的剪切屈服。  相似文献   

8.
聚合物增韧增强机理研究进展   总被引:6,自引:0,他引:6  
总结了橡胶增韧塑料机理,讨论了橡胶粒子形态,结构等因素对增韧效果的影响。介绍了近年来出现的刚性有机填料(ROF)增韧塑料的基本概念及冷拉机理。讨论了无机刚性粒子填充聚合物的增强、增韧与粒子的分散及界面的关系。  相似文献   

9.
纳米粒子在聚合物增强增韧中的应用   总被引:16,自引:0,他引:16  
针对弹性体增韧塑料的状况,介绍了刚性粒子塑料的优点,对纳米粒子的特性,制备方法及表面处理方法作了详细的论述,并报道了纳米粒子与聚合物的物理化学作用,微裂纹化增韧机理,基体层厚度对增韧效果的影响,以及纳米粒子在聚合物增强增韧中的应用情况。  相似文献   

10.
本文根据非弹性体增韧改性的新观点,研究了几种刚性无机粒子(普通C2CO3、超细CaCO3、钛白粉、超细石英粉)填充改性HDPE的效果以及填料粒子经不同的改性剂表面处理后填充的效果,并采用扫描电镜观察了试样的冲击断面形貌,探讨了刚性无机粒子增韧增强的机理及基本条件。结果表明,刚性无机粒子在基体有一定韧性且与基体结合紧密的条件下,可以促使周围基体发生屈服和取向,起到明显的增韧作用。  相似文献   

11.
In this paper, the results of a series of investigations of the effect of morphology on the brittle-ductile transition for HDPE/CaCO3 blends are summarized: (1) It seems the critical ligament thickness increases with increasing matrix toughness; (2) the interphase adhesion is very important for the toughness of HDPE/CaCO3 blends; (3) small particles are more effective than large ones; (4) CaCO3 particle aggregation will reduce toughening efficiency; (5) uniform CaCO3 particle size is more effective than heterogeneous size for the toughening of HDPE. It is expected that a polymer with higher modulus as well as higher toughness will be obtained by appropriately controlling the morphology of HDPE/CaCO3 blends. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The effects of rubber particle size and rubber/matrix adhesion on the impact properties of a brittle polymer have been separated using polystyrene (PS)/acrylonitrile-butadiene rubber (NBR) as a model system in which interfacial chemical reaction could be controlled. It has been proven that the interfacial adhesion between the rubber phase and the PS matrix not only greatly aids in reducing the rubber particle size but also plays a further role in improving the impact properties of the matrix polymer. The impact energies of PS/NBR blends with interfacial chemical bonding are four to ten times as high as those without interfacial bonding for the same average rubber particle size. However, at temperatures below the glass transition temperature of the rubber, there is no difference in impact energies with or without interfacial chemical bonding. It has been found that the optimum rubber particle size for toughening PS is influenced by interfacial adhesion. Smaller optimum rubber particle size is observed for blends with greater amounts of interfacial chemical bonding.  相似文献   

13.
The performance of the designed structured core-shell latex particles in toughening polycarbonate (PC) matrix was examined. Izod impact testing of the PC-core-shell latex blends were used to evaluate the influence of parameters related to the core-shell latex particles on toughening polycarbonate. Among these parameters are the particle size and levels of crosslinking of the core rubber particles, composition and molecular weight of the shell polymer, and weight ratio of shell to core polymers as well as the particle morphology. In this work, core-shell structured latex particles with thinner shells of higher molecular weight polymers were found to improve the impact resistance of polycarbonate. The role of chain entanglements in increased adhesion between the discrete rubbery phase and the continuous glassy matrix and the importance of surface-to-surface interparticle distance for toughening at various temperatures are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The recent advances and theories in the studies of the toughening mechanism have been reviewed to explain the effect of rubber particles in different rubber modified Polyolefin materials. To elucidate toughening effect, major theories e.g., critical particle distance, particle size, micro deformation by stress field of rubber, shear yielding and crazing phenomena has been reviewed. Based on these theories, variety of blends of rubber modified Polyolefin materials has been compared but no one of these provided adequate information to be considered as total theory of toughening. To achieve the objective of toughening, it is important to maintain critical particle size, uniform particle distribution and good interfacial adhesion by inclusion of suitable compatibilizer in the matrix. Particular attention has been paid to study the type of morphology and bimodal distribution of rubber particles to elucidated toughening effect. Rubber particle cavitation, which comes from micro-voids and rubber phase interface are then further discussed.  相似文献   

15.
Souheng Wu 《Polymer》1985,26(12):1855-1863
The effects of rubber particle size and rubber-matrix adhesion on notched impact toughness of nylon-rubber blends are analysed. A sharp tough-brittle transition is found to occur at a critical particle size, when the rubber volume fraction and rubber-matrix adhesion are held constant. The critical particle size increases with increasing rubber volume fraction, given by dc = Tc{(πr)13 ? 1}?1, dc is the critical particle diameter, Tc the critical interparticle distance, and ør the rubber volume fraction. The critical interparticle distance is a material property of the matrix, independent of rubber volume fraction and particle size. Thus, the general condition for toughening is that the interparticle distance must be smaller than the critical value. Van der Waals attraction gives sufficient adhesion for toughening. Interfacial chemical bonding is not necessary. Even if there is interfacial chemical bonding, a polymer-rubber blend will still be brittle, if the interparticle distance is greater than the critical value. The minimum adhesion required is about 1000 J m?2, typical for van der Waals adhesion. In contrast, chemical adhesion is typically 8000 J m?2. The present criterion for toughening is proposed to be valid for all polymer—rubber blends which dissipate the impact energy mainly by increased matrix yielding.  相似文献   

16.
It is frequently emphasized that the action of interfacial adhesion is a critical parameter to improve the stiffness and toughness of polylactic acid/thermoplastic starch (PLA/TS) blends. In this work, the micromechanical behavior of PLA/TS blends with droplet morphology selected from literature is predicted and analyzed systematically by finite element analysis. A quantitative assessment of the effect of interface (perfect or imperfect) on the elastic behavior and craze initiation for toughening of PLA/TS blends is presented. For the elastic behavior, the PLA phase is the blend's load-bearing component as the TS is more compliant than PLA, so an interface perfectly bonded reduces the blend's elastic modulus when compared to the modulus obtained if the interface is weakly bonded. Regarding the toughening behavior, as a compliant phase, the TS has the potential to nucleate stable crazes in the host PLA matrix independently of the degree of interfacial adhesion because the highly stressed region lies near the equator of the particle; nonetheless, the critical stress for craze initiation is very sensitive to the TS particle size. On the other hand, as the TS is less capable than PLA to develop large hydrostatic stresses, the TS has a low potential to dissipate energy by cavitation.  相似文献   

17.
The recent advances in the studies of the toughening methods and theories of polypropylene (PP)–elastomer blends are reviewed in the present article. Inclusions are key to toughening PP; they can play the role of agent‐induced crazing, cause shear yielding of the matrix around them, and end the propagation of cracks. The major theories interpreting the toughening mechanisms of the blends are: multiple crazing, damage competition theory, shear‐yielding theory, microvoids, and cavitation theories. The factors affecting the toughening effect are relatively complicated. Therefore, these theories have been verified only in some cases when they have been applied in relevant conditions. To achieve the objective of better toughening, it is important to improve the uniform distribution of dispersed‐phase particle size and suitable filler size, as well as improving the dispersion of the inclusions formed in the matrix; in addition the matrix materials or fillers must be functional with suitable modifier in order to enhance the interfacial adhesion or to improve the interfacial morphological structure between the filler and matrix. However, the exact toughening mechanisms for PP–rubber blends have to be studied further because of complications resulting from the crystallinity of the matrix. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 409–417, 2000  相似文献   

18.
The percolation model is used to interpret the brittle-ductile transition of HDPE/CaCO3 blends. The percolation threshold (θsc) for HDPE/CaCO3 blends is found to be 0.52, which is equal to π/6. The critical exponent (g) is found to be 0.83 for HDPE/CaCO3 blends. The toughening efficiency of blends which have monodisperse, highly asymmetrical particles, strong interphase adhesion and high matrix toughness is greater. The brittle-ductile transition in polymer blends seems to be a universal percolation phenomenon.  相似文献   

19.
Enhancing matrix crystallization has been demonstrated to be an effective method to simultaneously improve the impact toughness and heat resistance of poly(l-lactide) (PLLA) modified with flexible polymers, such as poly(ε-caprolactone) (PCL). Unfortunately, increasing PLLA matrix crystallinity alone cannot guarantee the enhancement of impact toughness in most cases, so other structural parameters should be considered. In this work, taking PLLA/PCL (80/20) blend as an example, the combined roles of matrix crystallization and impact modifier particle size in the toughening have been investigated. PLLA matrix crystallinity was controlled by adding a highly effective nucleating agent and PCL particle size was tailored by varying processing conditions while maintaining constant interfacial adhesion. It is interesting to find that toughening is efficient only if matrix crystallinity and particle size are well matched. With the significant increase of matrix crystallinity, an evident decrease of optimum particle size for toughening PLLA has been identified for the first time. Therefore, suitable particle size is the precondition for highly crystalline matrix to work effectively in the toughening because only small particles (0.3–0.5 μm) are effective in trigger shear yielding mechanism of the matrix needed for good toughness, whereas relatively large particles (0.7–1.1 μm) are only capable of toughening amorphous matrix effectively by initiating multiple crazing of the matrix. Importantly, our findings can be used to well explain the reason for the different roles of matrix crystallization in the toughening of different PLLA blends reported in the literature. Furthermore, the heat resistance of the blend with a highly crystalline matrix is much better than that of the blend with an amorphous one as expected. This work could not only provide a new insight into the synergistic roles of matrix crystallization and modifier particle size in the toughening of PLLA but also set up a universal framework for designing high-performance PLLA products with both good impact toughness and high heat resistance.  相似文献   

20.
Rubber particle size is an important issue in toughening of engineering thermoplastics. Use of core-shell impact modifiers offers the advantage of a predetermined particle size; however, these particles must be appropriately dispersed in the matrix polymer to be effective for toughening. Recent work has shown that core-shell modifiers having a poly(methyl methacrylate) (PMMA) shell can be dispersed in nylon 6 with the aid of certain styrene/maleic anhydride (SMA) copolymers. These materials are miscible with PMMA and can also react with polyamides during melt processing. Enhanced interaction between the rubber and matrix phases as a result of the formation of in situ graft copolymers at the interface was suggested to contribute to the improved dispersion. However, rheological issues also influence the dispersion of core-shell modifier particles in the matrix. This article examines the influence of the matrix melt viscosity on the dispersion of the core-shell particles in the nylon 6 matrix and the resulting mechanical properties of the blends using four nylon 6 materials of different molecular weights. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号