首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
阐述了眚上升布置的内螺纹管和光管在近临界及超临界压力区的传热牧场 生的试验结果。在近临界压力区。随着压力向临界压力造近,光管的传热特性变差,传热恶化的临界干度下降得很厉害,甚至在过冷区就会发生壁温飞升;内螺纹管在近临界压力区可以消除传热恶化,但是随着靠近临界压力其抑制传热恶化的能力下降。传热恶化后的光管和内螺纹管的最小传热系数分别在压力为21.0MPa和22.0MPa。超过临界压力后,光管和内螺纹管的传热特性得到改善,内螺纹管在高焓值区可以降低壁温。  相似文献   

2.
An experiment for heat transfer of water flowing in a vertical rifled tube was conducted at subcritical and supercritical pressure. The main purpose is to explore the heat transfer characteristics of the new-type rifled tube at low mass flux. Operating conditions included pressures of 12–30 MPa, mass flux of 232–1200 kg/(m2 s), and wall heat fluxes of 133–719 kW/m2. The heat transfer performance and wall temperature distribution at various operating conditions were captured in the experiment. In the present paper, the heat transfer mechanism of the rifled tube was analyzed, the effects of pressure, wall heat flux and mass flux on heat transfer were discussed, and corresponding empirical correlations were also presented. The experimental results exhibit that the rifled tube has an obvious enhancement in heat transfer, even at low mass flux. In comparison with a smooth tube, the rifled tube efficiently prevents Departure from Nucleate Boiling (DNB) and delays dryout at subcritical pressure, and also improves the heat transfer of supercritical water remarkably, especially near pseudo-critical point. An increase in pressure or wall heat flux impairs the heat transfer at both subcritical and supercritical pressure, whereas the increasing mass flux has a contrary effect.  相似文献   

3.
运用计算流体力学方法,采用SSG雷诺应力模型对高温条件下垂直内螺纹管中超临界水的二次流特性进行了研究。研究发现:内螺纹的导流作用在垂直于主流的方向产生了很强的二次流场,主流焓的变化对二次流场的基本结构影响很小。内螺纹管周向和径向上的传热系数分布不均,超临界水在螺纹顶部区域的传热效果远好于螺纹底部。在螺纹顶部表面形成的单个旋涡产生一个压力相对较低的区域,传热增强。在大比热区,由于流体热物性急剧变化,传热的不均性更加显著。螺纹底部壁面是内螺纹管周向传热的薄弱位置,其内部结构的优化应重点集中在该区域。  相似文献   

4.
The heat transfer characteristics of supercritical pressure water in a vertically-upward optimized internally-ribbed tube was investigated experimentally to study the mechanisms of unusual heat transfer of supercritical pressure water in the so-called large specific heat region. The experimental parameters were as follows. The pressure at the inlet of the test section ranged from 22.5 to 29.0 MPa, and the mass flux of the fluid was from 650 to 1200 kg/m2 s, and the heat flux on the inside wall of the tube varied from 200 to 660 kW/m2. According to experimental data, the characteristics of heat transfer enhancement and also the heat transfer deterioration of supercritical pressure water in the large specific heat region was analyzed and based on the comparison and analysis of the current major theories that were used to explain the reasons for unusual heat transfer to occur, the mechanisms of heat transfer enhancement and deterioration were discussed, respectively. The enhanced heat transfer was characterized by the gently changing wall temperature, the small temperature difference between the inside-tube-wall and the bulk fluid and the high heat transfer coefficient in comparison to the normal heat transfer. The deteriorated heat transfer could be characterized by the sharply increasing wall temperature, the large temperature difference and a sudden decrease in heat transfer coefficient in comparison to the normal heat transfer. The heat transfer enhancement of the supercritical pressure water in the large specific heat region was suggested to be a result of combined effect caused by the rapid variations of thermophysical properties of the supercritical pressure water in the large specific heat region, and the same was true of the heat transfer deterioration. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, might result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid made the heat transfer deteriorated eventually and explained how this lighter fluid layer formed.  相似文献   

5.
In the present work, convection heat transfer of water at supercritical pressure in a narrow annulus at low Reynolds numbers (less than 1500) has been investigated numerically. The continuity, momentum and energy equations have been solved simultaneously using computational fluid dynamics techniques with the inlet Reynolds number ranging from 250 to 1000, Grashof number from 2.5 × 105 to 1 × 106 and the inlet fluid temperature from 360 °C to 380 °C. In all of the case studies, a sub-cooled water flow at supercritical pressure (25 MPa) and a temperature close to the pseudo-critical point enters the annular channel with constant heat flux at inner wall surface and insulated at outer wall. To calculate the velocity and temperature distributions of the flow, discretized form of the governing equations in the cylindrical coordinate system are obtained by the finite volume method and solved by the SIMPLE algorithm. It has been shown that the effect of buoyancy is strong and causes extensive increase in velocity near the inner wall, and consequently an increase in the convective heat transfer, which is desirable. Besides, the effects of inlet Reynolds number, Grashof number and inlet temperature on the velocity distribution and also on the heat transfer have been investigated.  相似文献   

6.
The future of circulating fluidized bed (CFB) combustion technology is in raising the steam parameters to supercritical levels. Understanding the heat flux distribution on the water wall is one of the most important issues in the design and operation of supercritical pressure CFB boilers. In the present paper, the finite element analysis (FEA) method is adopted to predict the heat transfer coefficient as well as the heat flux of the membrane wall and the results are validated by direct measurement of the temperature around the tube. Studies on the horizontal heat flux distribution were conducted in three CFB boilers with different furnace size, tube dimension and water temperature. The results are useful in supercritical pressure CFB boiler design. __________ Translated from Journal of Power Engineering, 2007, 27(3): 336–340 [译自: 动力工程]  相似文献   

7.

Within the range of pressures from 23 to 30 MPa, mass velocities from 600 to 1200 kg/(m2s), and heat fluxes from 200 to 600 kW/m2, experiments have been performed for an investigation on heat transfer to supercritical water in inclined upward smooth tubes with an inner diameter of 26 mm and an inclined angle of 20° from the horizon. The results indicated that heat transfer characteristics of supercritical water are not uniform along the circumference of the inclined tube. An increase in the mass velocity of the working fluid can decrease and even eliminate the non-uniformity. Properties of supercritical fluid acutely vary with the temperature near the pseudocritical point. While the ratio of the mass velocity to the heat flux exceeded 2.16 kg/(kWs), heat transfer enhancement occurred near the pseudocritical point; conversely, heat transfer deterioration occurred while the ratio of the mass velocity to the heat flux was lower than 2.16 kg/(kWs). As the pressure increased far from the critical pressure, the amount of deterioration decreased. Correlations of heat transfer coefficients of the forced-convection heat transfer on the top and bottom of the tube have been provided, and can be used to predict heat transfer coefficient of spirally water wall in supercritical boilers.  相似文献   

8.
INTRODUCTI0NWaterseparat0risanimportantthickwallc0mpo-nentof600MWsupercriticalpressureboiler.Itsmainfunctionist0ensurethattheevap0rator,superheater,reheaterandeconomizert0becooledfullyandoper-atesafelyduringstart-up.Itisfittedatthe0utletofevaPorator.Whentheb0ilerloadislessthan35%MCR(boilermaJximumc0ntinuousevaporation),sub-cooledwaterorwatersteammixturefromtheevap-orator0fupperc0mbustioncharnberenterstangen-tiallyinthewaterseparator.Thesteam,separatedbycentrifugalforceandgravity,flowsi…  相似文献   

9.
Cuicui Wang  Huixiong Li 《传热工程》2014,35(6-8):685-692
A large number of studies have been carried out on the flow and heat transfer of supercritical pressure fluids in the past decades. However, there are still some uncertainties and deficiencies in the accurate prediction for supercritical fluid heat transfer coefficient due to the large and fast variations of fluids properties in the so-called pseudo-critical region. In this paper, 15 correlations were selected from the literature and were compared with each other to verify their capability in predicting heat transfer coefficient of supercritical pressure water in vertical tubes. Based on the comparison between the calculation results of the existing heat transfer correlations and the experimental data obtained from the open literature, it was found that the Swenson et al. correlation and the Hu correlation can reasonably predict the heat transfer coefficient of supercritical water in the pseudo-critical region. After evaluating these correlations, the authors conducted polynomial fitting for the collected experimental data and got a new correlation for heat transfer coefficient of water at supercritical pressures. The new correlation can fit well with the experimental data even in the neighborhood of pseudo-critical temperature.  相似文献   

10.
本研究对比分析了三维内肋管及三维变形管的结构特点和强化传热机理,在相同工况下,揭示了光滑圆管、三维内肋管及三维变形管用于管式空气预热器时的传热性能和流动阻力性能,三维内肋管和三维变形管传热性能均优于光滑圆管,三维变形管管内传热系数和流动阻力系数随短长轴B/A的减小而增大,三维内肋管可增加每米肋数、肋宽和肋高以强化传热效果,但流体流动阻力也将增加,低Re下,三维变形管管内综合传热性能优于三维内肋管,三维变形管管外自支撑而防止管束振动的特点可以实现在管内外的冷热流体纯逆流动,提出一种传热温差高的逆流三维变空间管式空气预热器,在相同工况条件下,空气预热器重量减轻,体积减小约65%,节省大量的生产和运输成本以及安装空间,三维变形管空气预热器在烟气余热利用中具有推广应用价值。  相似文献   

11.
In the present paper, experiments of CHF were, respectively, conducted in a smooth tube and a four-head spirally internally ribbed tube. The smooth tube has an average inner diameter of 11.69 mm (∅18×3 mm). The four-head spirally internally ribbed tube has an average inner diameter of 11.26 mm (∅22×5.5 mm). The test section was vertically installed in the test loop and was uniformly heated by electricity. The working fluid was water, which entered into the test tube upward with an inlet subcooled temperature of 40–50 °C. The test pressure ranged from 10 to 21 MPa. The mass flux ranged from 400 to 1600 kg·m−2·s−1. The effects of various parameters such as mass flux and pressure on CHF are presented. The experimental results in the smooth tube and the four-head spirally internally ribbed tube are compared with each other. It shows that CHF can be enhanced by the four-head spirally internally ribbed tube in the test range. The experimental data in the smooth tube are used to evaluate a precise CHF correlation available in the literature. Good agreements are obtained.  相似文献   

12.
对超临界压力下RP-3航空煤油在内截面宽为4mm、高为4mm、固体壁面厚为1mm、加热段长度为500mm的水平矩形冷却通道内的对流传热特性进行了数值模拟研究。分析了通道内速度场的分布规律,讨论了热流密度、压力、进口温度对传热的影响。计算结果表明:当主流温度处于拟临界温度附近时,流体物性参数变化剧烈,导致传热系数降低,传热出现恶化。在超临界压力下,较低的热流密度、增大压力、降低进口流体温度或提高质量流速均有利于改善冷却通道内的传热性能。  相似文献   

13.
The subcooled flow boiling heat transfer characteristics of a kerosene kind hydrocarbon fuel were investigated in an electrically heated horizontal tube with an inner diameter of 1.0 mm, in the range of heat flux: 20–1500 kW/m2, fluid temperature: 25–400 °C, mass flux: 1260–2160 kg/m2 s, and pressure: 0.25–2.5 MPa. It was proposed that nucleate boiling heat transfer mechanism is dominant, as the heat transfer performance is dependent on heat flux imposed on the channel, rather than the fuel flow rate. It was found that the wall temperatures along the test section kept constant during the fully developed subcooled boiling (FDSB) of the non-azeotropic hydrocarbon fuel. After the onset of nucleate boiling, the temperature differences between inner wall and bulk fluid begin to decrease with the increase of heat flux. Experimental results show that the complicated boiling heat transfer behavior of hydrocarbon fuel is profoundly affected by the pressure and heat flux, especially by fuel subcooling. A correlation of heat transfer coefficients varying with heat fluxes and fuel subcooling was curve fitted. Excellent agreement is obtained between the predicted values and the experimental data.  相似文献   

14.
Deterioration in heat transfer of endothermal hydrocarbon fuel   总被引:5,自引:0,他引:5  
Numerical studies under supercritical pressure are carried out to study the heat transfer characteristics in a single-root coolant channel of the active regenerative cooling system of the scramjet engine, using actual physical properties of pentane. The relationships between wall temperature and inlet temperature, mass flow rate, wall heat flux, inlet pressure, as well as center stream temperature are obtained. The results suggest that the heat transfer deterioration occurs when the fuel temperature approaches the pseudo-critical temperature, and the wall temperature increases rapidly and heat transfer coefficient decreases sharply. The decrease of wall heat flux, as well as the increase of mass flow rate and inlet pressure makes the starting point of the heat transfer deterioration and the peak point of the wall temperature move backward. The wall temperature increment induced by heat transfer deterioration decreases, which could reduce the severity of the heat transfer deterioration. The relational expression of the heat transfer deterioration critical heat flux derives from the relationship of the mass flow rate and the inlet pressure.  相似文献   

15.
This paper describes the experimental results obtained from the heat transfer in saturated nucleate boiling for the water/lithium bromide mixture flowing upward in a uniformly heated vertical tube, which is the generator of a solar absorption refrigeration system. The concentration range for the mixture was from 48 to 56 wt.% Plots of local and average heat transfer coefficients are shown against solution concentration, heat flux and the temperature difference between the wall tube and the fluid. It was observed that the average heat transfer coefficients increased for the mixture with an increase of the heat flux and with the decrease of the solution concentration and the temperature difference. The average heat transfer coefficients varied from 1.0 to 4.0 kW/m2 °C.  相似文献   

16.
Confined round jet impingement cooling of a flat plate at constant heat flux with carbon dioxide at supercritical pressures was investigated numerically. The pressure ranged from 7.8 to 10.0 MPa, which is greater than the critical pressure of carbon dioxide, 7.38 MPa. The inlet temperature varied from 270 to 320 K and the heat flux ranged from 0.6 to 1.6 MW/m2. The shear-stress transport turbulence model was used and the numerical model was validated by comparison with experimental results for jet impingement heating with hot water at supercritical pressures. Radial conduction in the jet impingement plate was also considered. The sharp variations of the thermal-physical properties of the fluid near the pseudocritical point significantly influence heat transfer on the target wall. For a given heat flux, the high specific heat near the wall for the proper inlet temperature and pressure maximizes the average heat transfer coefficient. For a given inlet temperature, the heat transfer coefficient remains almost unchanged with increasing surface heat flux at first and then decreases rapidly as the heat flux becomes higher due to the combined effects of the thinner high specific heat layer and the smaller thermal conductivity at higher temperature.  相似文献   

17.
ABSTRACT

Conjugate heat transfer to supercritical CO2 in membrane helical coiled tube heat exchangers has been numerically investigated in the present study. The purpose is to provide detailed information on the conjugate heat transfer behavior for a better understanding of the abnormal heat transfer mechanism of supercritical fluid. It could be concluded that the supercritical fluid mass flux and vertical/horizontal placement would significantly affect the abnormal heat transfer phenomenon in the tube side. The flow field of supercritical fluid is affected by both the buoyancy and centrifugal force in the conjugate heat transfer process. The local wall temperature and heat transfer coefficient in the tube side would rise and fall periodically for the horizontal heat exchanger, but this phenomenon will gradually disappear with the increase of the mass flow rate or fluid temperature in the tube side. The dual effects of buoyancy force and centrifugal force lead to the deflection of the second flow direction for the vertical placement, which further results in the heat transfer deterioration region on the top-generatrix wall for the downward flow being larger than that for the upward flow.  相似文献   

18.
The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux (G), inlet pressure (Pin) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature (T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/Re2 and Gr/Re2.7, enhances the heat transfer coefficient (h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on Pin. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.  相似文献   

19.
对内肋管内部流体的湍流换热过程进行了数值模拟,讨论了肋高和肋的轴向夹角对换热的影响。相比于普通圆管,内肋圆管内的传热性能明显得到提高。无量纲肋高度和角度分别为0.8°和40°时传热效果最佳,而在0.1°和40°时换热与阻力的比值(Performance Evaluation Criteria,PEC)最大,综合换热性能最佳,可用于强化地源热泵地埋管换热。此外,本研究从火积耗散与传热效率的角度分析了内肋强化传热机理,得到管壁冷却管内流体的火积传递效率计算式,为内肋管强化换热的深入分析提供了依据。  相似文献   

20.
Numerical analysis has been carried out to investigate transient forced convective heat transfer to water near the critical region in developing flow through a vertical tube. With large variations of thermophysical properties such as density, specific heat, viscosity, and thermal conductivity near the thermodynamic critical point, heat transfer in the tube is strongly coupled with fluid flow. Buoyancy force parameter has also large variation with fluid temperature and pressure in the tube. Time dependent characteristics of fluid velocity, temperature, and heat transfer coefficient with water properties are presented and analyzed. Transient Nusselt and Stanton number distributions along the tube are also compared for various pressures in the tube. Because of heat transfer from the wall transition behavior from liquid-like phase to gas-like phase of heat transfer coefficient occurs when the fluid passes through pseudocritical temperature region in the tube. Turbulent viscosity ratio also has steep variation near the pseudocritical temperature close to the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号