首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent benthic meiofaunal foraminiferal assemblage from the continental slope (590-2 003 m) off Cape Hatteras, North Carolina exhibits high species richness and evenness, moderate diversity values, and lacks numerically dominant species. The preserved planktic assemblage has relatively low species richness, high evenness, low diversity, and a few numerically dominant species. Approximately 9% of the benthic species are those that typically live within continental shelf depth ranges. The benthic assemblage abundances and diversities do not follow depth patterns or geophysical characteristics. No biogeographic boundary can be described within the study area for meiofaunal foraminifera. Oxygen limitation does not appear to be a factor affecting the benthos of the North Carolina continental slope based upon the community structure of the benthic foraminifera, if total assemblage is assumed to reflect the recently living community. The high carbonate content of sediments in the area may be explained by foraminiferal tests. Within the study area, the foraminiferal assemblages are uniform, and probably reflect relative consistency of primary environmental variables as well as dynamic downslope transport and high influx of material from the water column in the vicinity where the Gulf Stream and the Western Boundary Undercurrent cross.  相似文献   

2.
Unusually dense assemblages of benthic infaunal invertebrates have been discovered in continental slope sediments off Cape Hatteras, North Carolina. Densities were highest on the upper slope, ranging from 24,055 to 61,244 (X¯=46,255) individuals m−2 in nine samples taken at a 600-m site in 1984 and 1985, and from 15,522 to 89,566 (X¯=37,282) individuals m−2 in single samples at 15 stations over a wider depth range of 530 to 1535 m in 1992. A lower slope station at 2000 m sampled six times in 1984–1985 and again in 1992, had densities consistently higher than 8500 individuals m−2. Species richness and diversity are consistently lower on the Cape Hatteras slope than at other locations off North Carolina and elsewhere in the western North Atlantic. The 1992 studies indicated that the upper slope infaunal assemblages (600m) were dominated by oligochaetes, while the middle slope assemblages (800–1400 m) were dominated by the polychaeteScalibregma inflatum. This latter depth range could be defined into two assemblages based upon suites of less abundant species. At depths of 1500–2000 m, a lower slope assemblage dominated by various deposit feeding polychaetes and oligochaetes was found. Results from the 1984–1985 studies suggest seasonal or year-to-year patterns in the dominance ofS. inflatum andCossura longocirrata. Unusually high sedimentation rates and organic carbon flux have been recorded from the slope off Cape Hatteras and may account for the high infaunal productivity in the area. Most of the dominant infaunal organisms are species more typical of shallow, coastal habitats rather than deep-sea species that dominate other areas of the U.S. Atlantic continental slope. Parallel investigations regarding the nature of organic matter in the Cape Hatteras sediments have revealed a mixture of both marine and terrestrially derived carbon, only a small percentage of which is composed of the smaller molecular weight polyunsaturated fatty acids more typical of continental slope sediments. It is likely that the high percentage of refractory organic matter would favor the survival of preadapted shelf species over those from adjacent slope environments.  相似文献   

3.
The textural, mineralogical, compositional and paleontological characteristics of an iron-cemented allochthonous sediment slab recovered from a zone of slumping between water depths of 2,100 and 2,350 m on the lower continental slope off Cape Hatteras are summarized. Results support interpretation of the sediment slab as the oxidized equivalent of pyrite-cemented Pleistocene to Recent sediment, an uncommon form of lithification in deep sea sediments. We propose that exposure of such slumped sediment slabs to seawater has produced an alteration sequence from pyrite-cement to iron oxide-cement. These observations extend the range of pyrite-cemented sediment initially reported from water depths between 4,770 and 4,950 m on the lower continental rise off Cape Hatteras.  相似文献   

4.
The vertical distribution of 30 species of benthic infauna from continental slope (583–3000 m) sediments off Cape Lookout, North Carolina was closely correlated with feeding types. Carnivores, omnivores, filter feeders, and surface deposit feeders were mostly concentrated in the upper 0–2 cm of the cores. The depth distribution of subsurface deposit feeders was more variable, even among related taxa.  相似文献   

5.
Megafaunal assemblages were studied in August–September 1992 using a towed camera sled along seven cross-isobath transects on the continental slope off Cape Hatteras. A total of 20,722 megafaunal organisms were observed on 10,918 m2 of the sea floor between the depths of 157 and 1 924 m. These data were compared with data previously collected off Cape Hatteras in 1985 and at other locations along the eastern U.S. coast between 1981 and 1987. Megafaunal populations on the upper and lower slopes off Cape Hatteras were fouond to be similar, in terms of density and species composition, to those observed at the other locations.In contrast, megafaunal abundances were found to be elevated (0.88 and 2.65 individuals per m2 during 1985 and 1992, respectively) on the middle slope off Cape Hatteras when compared to most other slope locations (<0.5individuals per m2). These elevated abundances mainly reflect dense populations of three demersal fish, two eel pouts (Lysenchelys verrilli andLycodes atlanticus) and the witch flounderGlyptocephalus cynoglossus, and a large anemone (Actinauge verrilli). These four species dominated the megafauna off Cape Hatteras, whereas they represented only a minor component of megafaunal populations found at other slope locations. Additionally, numerous tubes of the foraminiferanBathysiphon filiformis were observed off Cape Hatteras, but not elsewhere. The high density of demersal fish found off Cape Hatteras appears to be related to the high densities of infaunal prey reported from this area. The high densities ofA. verrilli andB. fuliformis may be related to the same factors responsible for the high infaunal densities, namely enhanced nutrient inputs in the form of fine particles. Extreme patchiness also was observed in the distributions of the middle slope taxa off Cape Hatteras. This patchiness may reflect the habitat heterogeneity of this exceptionally rugged slope and the sedentary nature of the organisms inhabiting it.  相似文献   

6.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

7.
The studies reported in this special issue ofDeep-Sea Research are largely derived from data collected as part of programs supported by the U.S. Department of the Interior, Minerals Management Service (MMS) in response to concerns about the effect of oil and gas exploration on the largely unknown continental slope environment. Results of the MMS U.S. South Atlantic continental slope and rise program conducted off the Carolinas from Cape Hatteras to off Charleston in depths ranging from 600–3500 m identified the importance of the slope off Cape Hatteras in cycling of materials from the shelf to the deep sea. Other more detailed investigations followed which filled numerous gaps in our knowledge of the role played by such special regions of the continental slope in the global cycling of carbon and other materials.  相似文献   

8.
Analyses of DSRV “Alvin” core samples on the Cape Hatteras margin indicate major textural and compositional changes at depths of about 1000 and well below 2500 m. The distribution patterns of petrologic parameters correlate well with water mass flow and suspended-sediment plumes measured on this margin by other workers. Our study also shows: (a) vigorous erosion and sediment transport at depths of less than 400 m resulting from the NE-trending Gulf Stream flow; (b) deposition, largely planktonic-rich sediment released from the Gulf Stream, on the upper- to mid-slope, to depths of about 800–1200 m; (c) winnowing, resuspension and deposition induced by periodically intensified slope currents on the mid-slope to uppermost rise, between about 1000 and 2500 m; and (d) prevailing deposition on the upper rise proper (below 2500 m), from transport by the SW-trending Western Boundary Undercurrent. Sediments moved by bottom currents have altered the composition and distribution patterns of material transported downslope by offshelf spillover; this mixing of gravity-emplaced and bottom-current-transported sediment obscures depositional boundaries. Moreover, reworking of the seafloor by benthic organisms alters physical properties and changes erodability of surficial sediments by bottom currents. Measurement of current flow above the seafloor and direct observation of the bottom are insufficient to delineate surficial sediment boundaries. Detailed petrologic analyses are needed to recognize the long-term signature of processes and define depositional provinces.  相似文献   

9.
The sources and fates of metabolizable organic carbon were examined at three sites on the North Carolina slope positioned offshore of Cape Fear, Cape Lookout and Cape Hatteras. The13C/12C compositions (δ13C) of the solid phase organic matter, and the dissolved inorganic carbon (ΣCO2) produced during its oxidation, suggested that the labile fraction was predominantly marine in origin. The ΣCO2 concentration gradient across the sediment-water interface, and by inference the ΣCO2 flux and production rate, increased northward from Cape Fear to Cape Hatteras. Methane distributions and ΣCO2 δ13C values suggest that the rate of anaerobic diagenesis increased northward as well. The differences in sedimentary biogeochemistry are most likely driven by an along-slope gradient of reactive organic carbon flux to the seabed. This trend in reactive organic carbon flux correlates well with macrofaunal densities previously observed at the three sites. Proximity to the shelf and the transport of particulate material by surface boundary currents may control the deposition of metabolizable material on the Carolina slope.Evidence for methanogenesis was found only on the Cape Hatteras slope. The methane, which was produced at a depth of approximately 1 m in the seabed, was consumed nearly quantitatively in the biologically mixed layer as it diffused upward. Irrigation of the sediments by infauna may have provided the necessary oxidant for the consumption of the methane.  相似文献   

10.
Live (Rose-Vengal stained) benthic foraminifera were studied along a transect across the main area of organic matter deposition in the Cape Blanc upwelling region. The faunal analyses suggest that at the shallowest station (1200 m) the benthic ecosystem is permanently influenced by the upwelling, whereas at the deepest stations (3010 and 2530 m depth) the ocean bottom is subject to significant organic influxes only in summer. The vertical zonation of foraminiferal species in the sediment shows a close correspondence with the depth distribution of oxic respiration, nitrate and sulphate reduction. It is suggested that this linkage is caused by the presence of various stocks of anaerobic and sulphate- and nitrate-reducing bacteria. Deep infaunal foraminiferal species are thought to feed selectively, either on the bacterial stocks or on nutritious particles produced by bacterial degradation of more refractory organic matter. As such, foraminiferal microhabitats are only indirectly controlled by pore water oxygen concentrations.  相似文献   

11.
Hurricane Diana was stalled over the continental shelf of central North Carolina on 11–13 September 1984 in the vicinity of a previously studied epifaunal community (30 m depth). Two research cruises following the hurricane used still camera and TV transects to obtain data which allowed an evaluation of stormrelated effects on taxa of algae, sponges, corals, echinoderms and fish. Analysis of 35-mm slides suggested no effects attributable to the hurricane except observations of damaged coral heads and dead mussels. Analysis of television transects indicated no storm related changes from the previous study in frequency of occurrence of large epibenthic taxa. Hurricane damage was much less than anticipated and it is hypothesized that these coral reef-type communities are adapted to or structured by strong bottom currents generated by the frequent passage of gales and that the passage of hurricanes causes little additional stress.  相似文献   

12.
The Neuse River estuary is part of the large Albemarle/Pamlico estuarine/lagoonal system (APES) of North Carolina. Exchange between the APES and the open ocean is restricted to inlets in the Outer Banks barrier islands. Freshwater discharge of the Neuse River is low in relation to the size of its estuary, so that the estuary is normally brackish over most of the area which accumulates fine-grained sediments. Mud (silt + clay) accumulation rates are low ( 6 mm year−1).From the mud distribution and the dynamics of suspended sediment in the estuary it has been inferred that the Neuse retains fines efficiently, with probable episodic (high discharge) losses seaward, to Pamlico Sound.As part of a study of particle transport, deposition, and accumulation in the Neuse estuary, we have collected radiochemical data (10 cores) and chemical data (seven cores) on sediment cores from the main channel of the estuary between New Bern, North Carolina and the estuary mouth. K/Al increases in the lower estuary, consistent with earlier reports of increasing illite in the clay fraction. Landward transport of sediment from Pamlico Sound is the most plausible explanation for the increasing K/Al (illite). A marine sediment source may, therefore, be important for the lower estuary.The distribution of sediment inventories (quantities per cm2 of sediment column) of particle-reactive radionuclides is consistent with the hypothesis of landward sediment transport. Inventories of excess 210Pb, 137Cs, and 239,240Pu are coherent through the estuary and show the effects of particle redistribution processes on regionally uniform inputs. To obtain excess (anthropogenic) Zn and Cu, we use metal/Al normalization to estimate natural backgrounds. Anthropogenic metal inputs are concentrated at the head of the estuary, and sediment inventories of excess Zn and Cu generally decrease seaward. Normalization of the excess Zn and excess Cu inventories to excess 210Pb inventories corrects the raw metal inventories for effects of lithology and sediment redistribution. The normalized excess Zn inventory decreases smoothly seaward, while the normalized excess Cu inventory shows an unexplained mid-estuary maximum. Low normalized inventories of anthropogenic metals at the estuary mouth indicate that little modern riverine sediment is stored there.Increasing K/Al (illite) and decreasing anthropogenic Zn and Cu in the lower estuary are thus both consistent with a predominantly marine sediment source. We conclude that landward transport of muds from Pamlico Sound has contributed significantly to the sediment balance of the lower Neuse estuary.  相似文献   

13.
Abstract

Grain size, coarse fraction analyses, and depositional environment as interpreted from microfauna are related to the character of sparker reflections at the location of core holes drilled by Exxon, Chevron, Gulf, and Mobil on the continental slope of the northern Gulf of Mexico. Continuous sparker reflections are correlated with slowly deposited, evenly bedded sediments containing bathyal faunas. The coarse fraction is dominated by the tests of foraminifera. Discontinuous, discordant reflections and diffractions are correlated with sediments more rapidly emplaced in the bathyal environment of the continental slope by slumping and sliding from the continental shelf. Their coarse fraction is dominated by terrigenous sand grains. A large portion of the volume of continental slope sediments appears to consist of these “displaced”; sediments, including an area 3–24 km wide and 80 km long, southeast of Corpus Christi, Texas. Comparable processes of movement of sediments are interpreted on the continental shelf south of the Southwest Pass of the Mississippi River. Bathymetry in this area is characterized by a series of subaqueous “gullies”; radiating from the river mouth and leading to terraces at their southern extremities. Side‐scan sonar and PDR surveys show a rough bottom in these “gullies”; and terraces, as contrasted with a relatively smooth bottom elsewhere. The rough bottom is interpreted as indicative of slump and creep of the sediments from shallower water. Some foundation soil borings in this area south of Southwest Pass find a low‐strength material gradually increasing in strength with depth. Other borings find a “crust”; of anomalously strong material 8–15 m below the mudline. The microfauna recovered from the “crust”; has moved to its present position by slump or creep from shallower water along a pattern comparable to the gullies shown in the present‐day bathymetry.  相似文献   

14.
To estimate the source and diagenetic state of organic matter reaching bottom sediments, fatty acids and sterols were measured in unconsolidated surface material (flocs) at 12 sites ranging from 600 to 2000 m across the mid-Atlantic continental slope off Cape Hatteras, North Carolina. Total free and esterefied fatty acids were similar in distribution and concentration to other coastal systems, with values ranging from 0.64 to 46.52 μg mg−1 organic carbon (1.10–68.85 μg g−1 dry sediment). Although shallow (600 m) stations contained significantly greater fatty acid concentrations than deep (> 1400m) stations, high variability observed at mid-depth (800 m) collections precluded a consistent relationship between total fatty acid concentration and station depth. At three sites where underlying sediments were also collected, decreases in total fatty acids, reduced amounts of polyenoic acids and significant presence of bacterial fatty acid suggest rapid reworking of labile organic material that reaches the sediment surface. The distribution of sterols was remarkably consistent among all sites even though there were large variations in concentrations (1.8–20.7 μg mg−1 organic carbon). Sterol composition indicated phytoplankton, principally diatoms and dinoflagellates, as the principal source of labile organic matter to sediments, together with a significant input of cholest-5-en-3β-ol typical of zooplankton and their feeding activity. A minor but widespread terrigenous input was also evident based upon significant concentrations of sterols dominant in vascular plants.  相似文献   

15.
16.
The Manteo Prospect is located about 45 mi northeast of Cape Hatteras, North Carolina. It is a high-risk prospect with world-class potential. The 21-lease unit was approved by the Minerals Management Service (MMS) in May 1990. A suspension of operations (SOO) was issued in October 1992 by the MMS. Chevron was approved for an exploration permit for Block 510 while Mobil's plan for Block 467 was under appeal. The Baltimore Canyon Trough and the Carolina Trough are the two large and deep sedimentary basins of the Atlantic Continental Margin. The Manteo unit is at the juncture of these two sedimentary basins. The Manteo Prospect is interpreted as a reef with its overlying structural high on the seaward edge of a carbonate platform. The structure is approximately30 mi long and 3-5 mi wide. The initial exploration well will be located at the highest point on the structure. Potential source rocks for the prospect are euxinic basinal shales and black micrite as well as interior lagoonal shales associated with the reef. The geothermal gradient projected from wells in the Baltimore Canyon Trough indicates that thermally mature sediments would be encountered below 12,000 ft in the vicinity of the Manteo Prospect. Mobil estimated that the Manteo Prospect may contain as much as 5 trillion ft3 of dry natural gas. A meeting was held between the State of North Carolina, MMS, and Chevron in February 1997 to discuss the proposal for the Manteo Prospect. An additional meeting held in September concentrated on drilling technology. A well could be drilled on Block 467 or Block 510 during the year 2000. Chevron has not decided which type of drilling vessel will be employed. The potential shorebase for operations is Morehead City, North Carolina.  相似文献   

17.
The Manteo Prospect is located about 45 mi northeast of Cape Hatteras, North Carolina. It is a high-risk prospect with world-class potential. The 21-lease unit was approved by the Minerals Management Service (MMS) in May 1990. A suspension of operations (SOO) was issued in October 1992 by the MMS. Chevron was approved for an exploration permit for Block 510 while Mobil's plan for Block 467 was under appeal. The Baltimore Canyon Trough and the Carolina Trough are the two large and deep sedimentary basins of the Atlantic Continental Margin. The Manteo unit is at the juncture of these two sedimentary basins. The Manteo Prospect is interpreted as a reef with its overlying structural high on the seaward edge of a carbonate platform. The structure is approximately30 mi long and 3-5 mi wide. The initial exploration well will be located at the highest point on the structure. Potential source rocks for the prospect are euxinic basinal shales and black micrite as well as interior lagoonal shales associated with the reef. The geothermal gradient projected from wells in the Baltimore Canyon Trough indicates that thermally mature sediments would be encountered below 12,000 ft in the vicinity of the Manteo Prospect. Mobil estimated that the Manteo Prospect may contain as much as 5 trillion ft3 of dry natural gas. A meeting was held between the State of North Carolina, MMS, and Chevron in February 1997 to discuss the proposal for the Manteo Prospect. An additional meeting held in September concentrated on drilling technology. A well could be drilled on Block 467 or Block 510 during the year 2000. Chevron has not decided which type of drilling vessel will be employed. The potential shorebase for operations is Morehead City, North Carolina.  相似文献   

18.
The sedimentary record of 130 km of microtidal (0.9 m tidal range) high wave energy (1.5 m average wave height) barrier island shoreline of the Cape Lookout cuspate foreland has been evaluated through examination of 3136 m of subsurface samples from closely spaced drill holes. Holocene sedimentation and coastal evolution has been a function of five major depositional processes: (1) eustatic sea-level rise and barrier-shoreline transgression; (2) lateral tidal inlet migration and reworking of barrier island deposits; (3) shoreface sedimentation and local barrier progradation; (4) storm washover deposition with infilling of shallow lagoons; and (5) flood-tidal delta sedimentation in back-barrier environments.

Twenty-five radiocarbon dates of subsurface peat and shell material from the Cape Lookout area are the basis for a late Holocene sea-level curve. From 9000 to 4000 B.P. eustatic sea level rose rapidly, resulting in landward migration of both barrier limbs of the cuspate foreland. A decline in the rate of sea-level rise since 4000 B.P. resulted in relative shoreline stabilization and deposition of contrasting coastal sedimentary sequences. The higher energy, storm-dominated northeast barrier limb (Core and Portsmouth Banks) has migrated landward producing a transgressive sequence of coarse-grained, horizontally bedded washover sands overlying burrowed to laminated back-barrier and lagoonal silty sands. Locally, ephemeral tidal inlets have reworked the transgressive barrier sequence depositing fining-upward spit platform and channel-fill sequences of cross-bedded, pebble gravel to fine sand and shell. Shoreface sedimentation along a portion of the lower energy, northwest barrier limb (Bogue Banks) has resulted in shoreline progradation and deposition of a coarsening-up sequence of burrowed to cross-bedded and laminated, fine-grained shoreface and foreshore sands. In contrast, the adjacent barrier island (Shackleford Banks) consists almost totally of inlet-fill sediments deposited by lateral tidal inlet migration. Holocene sediments in the shallow lagoons behind the barriers are 5–8 m thick fining-up sequences of interbedded burrowed, rooted and laminated flood-tidal delta, salt marsh, and washover sands, silts and clays.

While barrier island sequences are generally 10 m in thickness, inlet-fill sequences may be as much as 25 m thick and comprise an average of 35% of the Holocene sedimentary deposits. Tidal inlet-fill, back-barrier (including flood-tidal delta) and shoreface deposits are the most highly preservable facies in the wave-dominated barrier-shoreline setting. In the Cape Lookout cuspate foreland, these three facies account for over 80% of the sedimentary deposits preserved beneath the barriers. Foreshore, spit platform and overwash facies account for the remaining 20%.  相似文献   


19.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号