首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
- DOI: http://dx.doi.org/10.1065/espr2006.04.299 Goal, Scope and Background This paper describes a statistical modelling approach, suggested as a policy tool in the Athens area for the assessment of the emissions reduction level required to meet the air quality standards for two criteria air pollutants, namely CO and NO2. Methods. More than ten years of hourly CO and NOx-NO2 concentration data measured by the monitoring network of the Hellenic Ministry for the Environment, Physical Planning and Public Works were analyzed and the original dataset has been reduced using a data evaluation procedure. Results and Discussion Seasonal pollutant concentration trends suggested that the reduction of CO and NOx concentrations observed in the beginning of the '90s is almost entirely attributed to the increase of the catalyst-equipped cars during this period. The numerical parameters of an empirical model relating EU standard exceedances with mean annual concentrations were defined and the model was validated using datasets from years that were not used for the estimation of these parameters. This model was used in conjunction with a roll-back equation as a policy tool for the assessment of the effect of different CO and NOx emissions reduction scenarios on air quality standard compliance for CO and NO2. Results predicted with this empirical modelling approach were assessed with monitored data averaged over a 3-year period, giving satisfactory results. Conclusion A methodology suggested for assessing the effects of different emissions reduction scenarios on air quality standard attainment was successfully applied for CO and NO2 in the Athens area. Recommendation and Perspective The proposed methodology can provide a useful tool for the evaluation of policies already in progress as well as the development of future policies for emissions reduction in urban areas with similar characteristics, aiming at air quality standard compliance on a timely manner. Such a methodology could be applied in other urban areas of Greece characterized by dense traffic, therefore assisting the development of national policies in relation to air pollutants for which standard exceedances occur.  相似文献   

3.
Background Aims, and Scope. Lead (Pb) is a naturally occurring element that poses environmental hazards when present at elevated concentration. It is being released into the environment because of industrial uses and from the combustion of fossil fuels. Hence, Pb is ubiquitous throughout global ecosystems. The existence of potentially harmful concentrations of Pb in the environment must be given full attention. Emissions from vehicles are major source of environmental contamination by Pb. Thus, it becomes imperative that concentrations of Pb and other hazardous materials in the environment not only in the Philippines, but elsewhere in the world be adequately examined in order that development of regulations and standards to minimize risk associated with these materials in urban areas is continued. The objectives of this study were: (1) to determine the levels of Pb in soil from selected urbanized cities in central region of the Philippines; (2) to identify areas with soil Pb concentration values that exceed estimated natural concentrations and allowable limits; and (3) to determine the possible sources that contribute to elevated soil Pb concentration (if any) in the study area. Methods This study was limited to the determination of Pb levels in soils of selected urbanized cities located in central region in the Philippines, namely: Site 1 – Tarlac City in Tarlac; Site 2 – Cabanatuan City in Nueva Ecija; Site 3 – Malolos City in Bulacan; Site 4 – San Fernando City in Pampanga; Site 5 – Balanga City in Bataan; and Site 6 – Olongapo City in Zambales. Soil samples were collected from areas along major thoroughfares regularly traversed by tricycles, passenger jeepneys, cars, vans, trucks, buses, and other motor vehicles. Soil samples were collected from five sampling sites in each of the study areas. Samples from the selected sampling sites were obtained approximately 2 to 3 meters from the road. Analysis of the soil samples for Pb content was conducted using an atomic absorption spectrophotometer. This study was conducted from 2003 to 2004. Since this study assumed that vehicular emission is the major source of Pb contamination in urban soil, other information which the researchers deemed to have bearing on the study were obtained such as relative quantity of each gasoline type disposed of in each city within a given period and volume of traffic in each sampling site. A survey questionnaire for gasoline station managers was prepared to determine the relative quantity of each fuel type (diesel, regular gasoline, premium gasoline, and unleaded gasoline) disposed of or sold within a given period in each study area. Results and Discussion Analysis of soil samples for Pb content showed the presence of Pb in all the soil samples collected from the 30 sampling sites in the six cities at varying concentrations ranging from 1.5 to 251 mg kg–1. Elevated levels of Pb in soil (i.e. greater than 25 mg kg–1 Pb) were detected in five out of the six cities investigated. Site 4 recorded the highest Pb concentration (73.9 ± 94.4 mg kg–1), followed by Site 6 (56.3 ± 17.1 mg kg–1), Site 3 (52.0 ± 33.1 mg kg–1), Site 5 (39.3 ± 19.0 mg kg–1), and Site 2 (38.4 ± 33.2 mg kg–1). Soil Pb concentration in Site 1 (16.8 ± 12.2 mg kg–1) was found to be within the estimated natural concentration range of 5 to 25 mg kg–1. Site 1 registered the least Pb concentration. Nonetheless, the average Pb concentration in the soil samples from the six cities studied were all found to be below the maximum tolerable limit according to World Health Organization (WHO) standards. The high Pb concentration in Site 4 may be attributed mainly to vehicular emission. Although Site 4 only ranked 3rd in total volume of vehicles, it has the greatest number of Type B and Type C vehicles combined. Included in these categories are diesel trucks, buses, and jeepneys which are considered the largest contributors of TSP (total suspended particles) and PM10 (particulate matter less than 10 microns) emissions. Conclusion Only one (San Juan in Site 4) of the thirty sampling sites recorded a Pb concentration beyond the WHO permissible limit of 100 mg kg–1. San Juan in Site 4 had a Pb concentration of >250 mg kg–1. On the average, elevated Pb concentration was evident in the soil samples from San Fernando, Olongapo, Malolos, Balanga, and Cabanatuan. The average soil Pb concentrations in these cities exceeded the maximum estimated natural soil Pb concentration of 25 mg kg–1. Average soil Pb concentration in Site 1 (16.8 mg kg–1) was well within the estimated natural concentration range of 5 to 25 mg kg–1. Data gathered from the study areas showed that elevated levels of Pb in soil were due primarily to vehicular emissions and partly to igneous activity. Recommendation and Outlook The findings of this study presented a preliminary survey on the extent of Pb contamination of soils in urban cities in central region of Philippines Island. With this kind of information on hand, government should develop a comprehensive environmental management strategy to address vehicular air pollution in urban areas, which shows as one of the most pressing environmental problems in the country. Basic to this is the continuous monitoring of Pb levels and other pollutants in air, soil, and water. Further studies should be conducted to monitor soil Pb levels in the six cities studied particularly in areas with elevated Pb concentration. The potential for harm from Pb exposure cannot be understated. Of particular concern are children who are more predisposed to Pb toxicity than adults. Phytoremediation of Pb-contaminated sites is strongly recommended to reduce Pb concentration in soil. Several studies have confirmed that plants are capable of absorbing extra Pb from soil and that some plants, grass species in particular, and can naturally absorb far more Pb than others.  相似文献   

4.
Background Since the 1970s, at least 200 hectares (ha) of farmland has been polluted by the heavy metal cadmium (Cd).Consequently, the Cd pollution has led to contaminate the rice production and caused acute social panic. According to the recent investigation results performed by the Taiwan Environmental Protection Administration (TEPA), it is indicated that most of the Cd pollution incidents in Taiwan resulted from the wastewater discharge of stearate Cd factories. To prevent the Cd pollution incidents from spreading, the TEPA has either forced these factories to close down or assisted them in improving their production processes since the 1980s. Unfortunately, accidental incidents of Cd pollution still emerge in an endless stream, despite the strict governmental controls placed on these questionable factories. Whether this pollution has resulted from undetected or hidden pollution sources stemming from two decades ago or comes from some new source, will be an outstanding issue. Therefore, this study attempts to identify the pollution sources of Cd in soil in Taiwan as well as to find the solution to the above-mentioned, outstanding issue by way of a methodology termed Material Flow Analysis (MFA). Method logy. The MFA has proved to be a useful tool on providing quantitative information of the flow of substances through an economic to an environmental system. Based upon the supply-and-demand theory of MFA, researchers have successfully conducted an overview of the use of materials in many industries, the construction industry being one of these. Therefore, this study tries to establish a set of analytical processes by way of MFA for identifying the pollution source of Cd in soil in Taiwan. In addition, the spirit of Life Cycle Analysis (LCA) technique was also employed to identify the materials, and products should be ignored as a crucial pollution source in this study. Results and Discussion According to the MFA methodology applied in this study and on the basis of related studies performed by Taiwanese governmental authorities, we arrive at the following analysis results: (1) the total amount of Cd from the economic perspective of material and product flow was approximately 441.2 tons; (2) the wastewater directly discharged into irrigation water can be concluded to be the major pollution route of Cd in farmland soil in Taiwan; (3) material plastic stabilizer (cadmium oxide, CdO), Zn-Pd compounds and Cu compounds should be the crucial pollution sources to contaminate environment through the route of wastewater in Cd flow analysis; (4) the crucial pollution sources to contaminate environment through the route of wastewater in Cd flow analysis were five factories, Coin, Jili, Taiwan Dye, Guangzheng and Mingguan, and they were all categorized as stearate Cd industries; (5) the typical source of the Cd pollution in soil in Changhua County through the pollution route of wastewater should be the metal surfacing process industries. Conclusions This study proved that MFA can be a good tool for identifying Cd flow as well as for recognizing the crux of the problem concerning incidents of Cd pollution. This study led to the conclusion that the causal relationship between farmland pollution caused by Cd and stearate Cd factories in Taiwan seemed quite close by way of MFA methodology. In addition, this study also found that the wastewater discharged from a single metal surfacing process factory will not cause remarkable farmland pollution. However, the wastewater simultaneously discharged from a group of pollution factories can result in a significant pollution incident. Recommendations and Outlook This case study is only a small contribution to the understanding of the toxic material flow related to Cd in the environment. This study recommends that Taiwanese governmental authorities should not deal with problems on an ad hoc basis, but should instead deal with Cd pollution problems overall employing control measures. Finally, the more accurate information or data we can collect, the more reliable results we can identify. Therefore, the quality and quantity of related data used in this MFA model should be closely scrutinized in order to ensure the most correct and comprehensive investigation on the toxic material flow.  相似文献   

5.
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485 ± 209 ng/m3 and 267 ± 161 ng/m3, respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.  相似文献   

6.
Goal, Scope and Background Some anthropogenic pollutants posses the capacity to disrupt endogenous control of developmental and reproductive processes in aquatic biota by activating estrogen receptors. Many anthropogenic estrogen receptor agonists (ERAs) are hydrophobic and will therefore readily partition into the abiotic organic carbon phases present in natural waters. This partitioning process effectively reduces the proportion of ERAs readily available for bioconcentration by aquatic biota. Results from some studies have suggested that for many aquatic species, bioconcentration of the freely-dissolved fraction may be the principal route of uptake for hydrophobic pollutants with logarithm n-octanol/water partition coefficient (log Kow) values less than approximately 6.0, which includes the majority of known anthropogenic ERAs. The detection and identification of freely-dissolved readily bioconcentratable ERAs is therefore an important aspect of exposure and risk assessment. However, most studies use conventional techniques to sample total ERA concentrations and in doing so frequently fail to account for bioconcentration of the freely-dissolved fraction. The aim of the current study was to couple the biomimetic sampling properties of semipermeable membrane devices (SPMDs) to a bioassay-directed chemical analysis (BDCA) scheme for the detection and identification of readily bioconcentratable ERAs in surface waters. Methods SPMDs were constructed and deployed at a number of sites in Germany and the UK. Following the dialytic recovery of target compounds and size exclusion chromatographic clean-up, SPMD samples were fractionated using a reverse-phase HPLC method calibrated to provide an estimation of target analyte log Kow. A portion of each HPLC fraction was then subjected to the yeast estrogen screen (YES) to determine estrogenic potential. Results were plotted in the form of 'estrograms' which displayed profiles of estrogenic potential as a function of HPLC retention time (i.e. hydrophobicity) for each of the samples. Where significant activity was elicited in the YES, the remaining portion of the respective active fraction was subjected to GC-MS analysis in an attempt to identify the ERAs present. Results and Discussion Estrograms from each of the field samples showed that readily bioconcentratable ERAs were present at each of the sampling sites. Estimated log Kow values for the various active fractions ranged from 1.92 to 8.63. For some samples, estrogenic potential was associated with a relatively narrow range of log Kow values whilst in others estrogenic potential was more widely distributed across the respective estrograms. ERAs identified in active fractions included some benzophenones, various nonylphenol isomers, benzyl butyl phthalate, dehydroabietic acid, sitosterol, 3-(4-methylbenzylidine)camphor (4-MBC) and 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN). Other tentatively identified compounds which may have contributed to the observed YES activity included various polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives, methylated benzylphenols, various alkylphenols and dialkylphenols. However, potential ERAs present in some active fractions remain unidentified. Conclusions and Outlook Our results show that SPMD-YES-based BDCA can be used to detect and identify readily bioconcentratable ERAs in surface waters. As such, this biomimetic approach can be employed as an alternative to conventional methodologies to provide investigators with a more environmentally relevant insight into the distribution and identity of ERAs in surface waters. The use of alternative bioassays also has the potential to expand SPMD-based BDCA to include a wide range of toxicological endpoints. Improvements to the analytical methodology used to identify ERAs or other target compounds in active fractions in the current study could greatly enhance the applicability of the methodology to risk assessment and monitoring programmes.  相似文献   

7.
Background, Aims and Scope The Rocky Mountain Arsenal (RMA) is a US Army facility located northeast of Denver, Colorado that has been listed on the National Priorities List (NPL). It is currently being re-mediated under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA). As part of the remediation activities at RMA, indications were found that a source of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) had existed on the RMA. As a result, investigations were undertaken to assess the possible nature and extent of any potential sources of PCDDs and PCDFs on the RMA site. In addition, other studies were conducted that examined PCDD/PCDF contamination in the Denver area. The goal of these studies was to examine nature and extent of PCDD/PCDF contamination both on the RMA as well as in the surrounding Denver area. The intent of this study was to characterize sources of dioxins (PCDDs) and dibenzofurans (PCDFs) at low environmental concentrations which might have originated from diffuse sources in the Denver Colorado area and in particular, the Rocky Mountain Arsenal (RMA) using Principal Component Analysis (PCA). Methods Over 200 soil samples were collected from the RMA and the Denver area. From the RMA, soil was collected as part of three studies that included a (1) random site-wide sampling of the RMA, (2) soils from the Western Tier Parcel (WTP), and (3) soils from Historic Use areas. Denver area soil samples were collected from five different land use categories: Residential, Agricultural, Open Space, Commercial, and Industrial. PCA was conducted on concentrations of 17 2,3,7,8-substuituted PCDD and PCDF congeners in 220 soil samples collected from the RMA and the Denver Front Range region. Results and Discussion PCA demonstrated the presence of possible minor sources of dioxins on the RMA. Current remediation efforts on RMA will result in the removal of these sources. Samples from the RMA were identified by the presence of a congener profile containing higher chlorinated PCDFs while the Denver Front Range areas were characterized by the presence of higher chlorinated PCDD congeners. The presence of a PCDF signature for the RMA samples does not necessarily indicate a major source of these contaminants on-site. Indeed, the relatively diffuse nature of the sample clusters would argue strongly against the presence of a single large source. Instead, the predominance of the PCDF congeners probably indicates the mixed industrial activities that took place on and near the site. Conclusion PCA results indicate that PCDD/PCDF profiles in soils collected from the RMA differed from those collected from the outlying Denver areas but that a major source of these contaminants was not present. Rather, the diffuse nature of sample clusters from the PCA indicated that the congener profile of RMA samples was most likely a result of the mixed industrial activities that historically have taken place on and near the site. PCA also indicated that many of the 'open area' (peripheral site-wide) RMA soils samples did not differ from Denver are reference congener profiles. This finding was also true for samples collected from the WTP that were essentially indistinguishable from Off-RMA reference samples. In addition, total TEQ concentrations in soils collected from WTP were similar to those measured in soils collected from the Denver Front Range areas indicating that lack of a major source of PCDD/PCDF within the WTP zones of the RMA. Recommendation and Outlook Analytical as well as statistical results of the soil congener data indicate that the WTP soils are indistinguishable from soils collected from non-industrial areas in the Denver area. This finding would support the recent 'de-listing' of the WTP from the other RMA areas and its' transfer to other authorities in the Denver area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号