共查询到19条相似文献,搜索用时 46 毫秒
1.
研究环绕智能环境中的智能家庭网络结构,提出建立在应用服务层之上的环境感知知识库和基于软件无线电的自适应物理层研究思路。环境感知知识库包含网络以及用户的自身的、社会的以及精神等环境信息,提出基于Agent的主动移动数据库系统模型实现。基础网络层模型,提出结合软件无线电的思想,自适应控制物理层获悉的参数请求,优化物理层性能,对于智能终端设备及时感应自身以及与用户相关的环境信息,该思路突破了传统的0SI网络标准物理层及链路层的思路。 相似文献
2.
3.
周 《计算机工程与应用》2009,45(17):200-203
基于多智能体协同选择提出了一种导购选择模型,该模型可识别其他可信买方智能体(\"值得信赖的朋友\"),并将它们关于卖方的信息结合自身关于卖方的信息综合起来协同选择质高价低的卖方,从而实现高质量的导购性能。构建了一个存在多种类型的买方和卖方的购物模拟环境,并进行了多组实验。实验结果表明,该模型可以准确地识别可信买方智能体,并可在复杂的购物环境中高效地选择出优质卖方。此外,实验结果还表明,有了该模型,单个买方智能体选择优质卖方的能力要明显高于无多智能体协同选择情况下单个买方智能体的选择能力。 相似文献
4.
5.
物联网环境下同一命题解决方案众多,如何从众多的方案中选择最佳方案变得非常困难。本文深入分析物联网环境下影响物联网环境下终端控制决策的特点,引入决策科学中的多属性决策,并根据物联网特点选用主客观组合赋值法确定物联网各属性的权值,选用几何加权平均(OWCM)算法对各种解决方案进行排序,即满足了不同用户的个性化需求,也不破坏物联网的整体属性,取得了良好的效果。 相似文献
6.
运行环境的开放性和动态性使得Web服务QoS具有内在的不确定性.为此,首先对QoS不确定性进行了分析,并分别采用实数、区间数和随机数对不同特性的Web服务QoS进行描述.然后,结合用户QoS需求约束,分别利用可能度和半方差理论实现区间数和随机变量的比较,将不确定昆合QoS感知的服务选择问题转化为确定型多属性决策问题,并利用TOPSIS(technique for order preference by similarityto ideal solution)方法进行求解.服务选择考虑了客观权重和主观权重.最后,通过实验验证了服务模型的有效性. 相似文献
7.
8.
目前的Web服务选择方法主要是服务关键词语义和属性匹配、运行性能最优评估,未能很好考虑用户对服务质量的个性化需求.对用户需求、服务质量进行模型描述,结合用户策略给出了一个服务评估和选择算法,该算法根据服务请求者的满意度对候选服务进行评估和选择.与已有的服务性能选择方法相比,该方法更能满足个性化需求. 相似文献
9.
10.
11.
为解决供应链合作过程中伙伴选择信任度低的问题,针对属性权重与时间权重未知的决策情况, 提出了一种基于声誉的多时段多属性供应链伙伴选择模型。模型引入三角模糊数来描述语言类评价信息,分别根据声誉属性间的关联和改进的时间衰减函数确定各时段的属性权重和各时段的时间常权,并将惩罚型变权方法引入模型时间权重设定中,使各时段的时间权重随各时段声誉状态值的变化而变化。算例分析结果表明,该模型有助于优选出声誉在各时段间较为均衡的供应链伙伴,同时具有较强的灵活性,可以适应不同的伙伴选择要求。 相似文献
12.
仅凭相似度来定位邻居用户对传统协同过滤算法的性能有严重的负面影响。引入社会网络中的信任机制,从个体在社交圈中的主观信任和全局声誉角度出发建模。分别考虑用户交互、评分差和用户偏好调节生成直接信任度。利用声誉及专家信任优先模型聚合生成间接信任度,将两者动态加权形成用户之间的信任关系。用参数[η]协调信任和相似双属性,使用户关系更加紧密,有效地解决新用户和稀疏性问题。经实证,改良后的模型颇有成效。 相似文献
13.
Traditional researches on user preferences mining mainly explore the user's overall preferences on the pro ject, but ignore that the fundamental motivation of user preferences comes from their attitudes on some attributes of the pro ject. In addition, traditional researches seldom consider the typical preferences combination of group users, which may have influence on the personalized service for group users. To solve this problem, a method with noise reduction for group user preferences mining is proposed, which focuses on mining the multi-attribute preference tendency of group users. Firstly, both the availability of data and the noise interference on preferences mining are considered in the algorithm design. In the process of generating group user preferences, a new path is used to generate preference keywords so as to reduce the noise interference. Secondly, the Gibbs sampling algorithm is used to estimate the parameters of the model. Finally, using the user comment data of several online shopping websites as experimental objects, the method is used to mine the multi-attribute preferences of different groups. The proposed method is compared with other methods from three aspects of predictive ability, preference mining ability and preference topic similarity. Experimental results show that the method is significantly better than other existing methods. 相似文献
14.
随着网络上发布的Web API服务越来越多,如何推荐给开发者用户感兴趣、信誉度高的Web API服务,以构建高质量高可信的软件服务系统,成为一个具有挑战性的研究问题。为此,提出一种基于用户使用历史与信誉评价的Web API服务推荐方法。计算用户使用历史记录与Web API之间的相似度,获得Web API的用户兴趣值。综合用户的Web API评分,调用Web API的Mashup服务的评价贡献和Alexa统计的Web API访问流量,获得Web API的信誉评价值。根据Web API的用户兴趣值以及信誉评价值,实现Web API的排名与推荐。实验结果表明,该方法推荐的Web API用户兴趣度DCG值高于SR-Based方法,服务信誉度DCG值高于UI-Based方法。 相似文献
15.
16.
针对目前声望模型中单一的遗忘因子无法准确地跟踪动态变化的声望值的问题,提出了一种以降低总误差为目标的动态选择遗忘因子的方法。该方法首先分析了不同的遗忘因子对总误差的影响,然后以声望值的变化程度为依据,在变化较为剧烈时选择较大的遗忘因子以快速体现变化,在变化较小时选择较小的遗忘因子以减小随机误差。仿真结果表明:该方法是行之有效的。 相似文献
17.
18.
New mobile devices offer multiple network interfaces to allow the users to connect to the best available network. The heterogeneous networks can provide better internet connectivity to the users by means of vertical handover. The handover must be triggered at a suitable point of time to avoid mobility issues such as unnecessary handovers and handover ping-pongs. The network selection during handover is usually done using classical multi-attribute decision making (MADM) methods. However, ranking abnormality is one of the prominent issues of the classical MADM methods. To address these challenges, a graph theory and matrix approach (GTMA) with Euclidean distance is proposed for vertical handover in wireless networks. GTMA is used for the selection of the appropriate network and Euclidean distance is utilized for the handover triggering. The simulation results reveal that the proposed method has eliminated the ranking abnormality issue. This proposed technique without triggering has also reduced the number of handovers up to 75.61%, 85.71%, and 66.67% as compared to the traditional MADM methods such as AHP, GRA, and TOPSIS respectively. The use of Euclidean distance for handover triggering has further reduced the number of handovers of the proposed technique as well as traditional techniques for all the traffic types. 相似文献
19.
Constructing and Utilizing a Model of User Preferences in Collaborative Consultation Dialogues 总被引:2,自引:0,他引:2
Sandra Carberry Jennifer Chu-Carroll & Stephanie Elzer 《Computational Intelligence》1999,15(3):185-217
A natural language collaborative consultation system must take user preferences into account. A model of user preferences allows a system to appropriately evaluate alternatives using criteria of importance to the user. Additionally, decision research suggests both that an accurate model of user preferences could enable the system to improve a user's decision-making by ensuring that all important alternatives are considered, and that such a model of user preferences must be built dynamically by observing the user's actions during the decision-making process. This paper presents two strategies: one for dynamically recognizing user preferences during the course of a collaborative planning dialogue and the other for exploiting the model of user preferences to detect suboptimal solutions and suggest better alternatives. Our recognition strategy utilizes not only the utterances themselves but also characteristics of the dialogue in developing a model of user preferences. Our generation strategy takes into account both the strength of a preference and the closeness of a potential match in evaluating actions in the user's plan and suggesting better alternatives. By modeling and utilizing user preferences, our system is able to fulfill its role as a collaborative agent. 相似文献