首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
采用浸渍法制备KF/Al2O3固体碱催化剂,催化丙烯醇与环氧乙烷(EO)反应合成乙二醇丙烯基醚。考察了催化剂焙烧温度、氟化钾(KF)负载量对催化性能的影响,并采用X-射线衍射(XRD)、扫描电镜(SEM)等对催化剂进行了表征。结果表明:KF负载量为30%,焙烧温度为550℃时,催化剂对丙烯醇和EO反应的催化活性最高。KF/Al2O3固体碱催化剂用于催化合成乙二醇丙烯基醚的最佳工艺条件为:反应温度100℃,反应压力为0.20-0.35MPa,催化剂用量为1.5%,n(丙烯醇)∶n(EO)为5∶1,反应时间为2h,EO转化率达97.35%。  相似文献   

2.
采用CuO-ZnO/Al2O3纳米铜基催化剂催化4-异丁基苯乙酮(IBAP)加氢制备1-(4-异丁基苯基)乙醇(IBPE);然后以PdCl2/PPh3/CuCl2为催化体系,将IBPE经羰基化反应合成2-(4-异丁基苯基)丙酸(布洛芬)。研究结果表明:在反应温度80℃,氢气压力1.5MPa,n(H2)∶n(IBAP)=40∶1,液空速0.30h-1的条件下,IBAP的加氢转化率为100%,IBPE收率达到93.6%。以盐酸为酸性介质、丁酮为溶剂,在温度100℃,CO压力5.5 MPa,反应时间24h的条件下,IBPE羰基化合成布洛芬,IBPE的转化率为100%,布洛芬收率达到72.9%。  相似文献   

3.
采用沉淀浸渍法制备了NiCoB/TiO_2非晶态合金催化剂,并对催化剂进行了H_2-TPR、XRD、XPS和SEM表征。结果表明:NiCo金属颗粒以非晶态的形式负载在TiO_2载体上,分散性较好,平均粒径为200 nm。在将该催化剂应用于对硝基苯甲酰胺还原制备对氨基苯甲酰胺的反应中,以水合肼为还原剂,考察了催化剂中金属负载量、Ni-Co金属的比例、催化剂的用量对对硝基苯甲酰胺催化还原反应的影响,并对反应条件进行优化。实验结果证明,较佳的反应条件为甲醇为溶剂,反应温度60℃,水合肼的用量为n(原料)∶n(水合肼)=1∶3,金属负载量为5%,最合适的金属质量比例为Ni∶Co=1∶1,催化剂用量占原料质量分数20%。在此条件下,对硝基苯甲酰胺的转化率大于99%,对氨基苯甲酰胺的选择性大于99%。  相似文献   

4.
以W4型RaneyNi为催化剂,双氰胺为脱溴抑制剂(助催化剂),甲醇为溶剂,对对溴硝基苯催化加氢还原制备对溴苯胺的反应进行了研究。考察了温度、氢气压力及助催化剂量等工艺条件对反应的影响,并对催化剂进行了套用实验。结果表明:在较佳反应条件下,对溴硝基苯的转化率达99.8%以上,对溴苯胺的摩尔选择率可达98.0%,催化剂可套用10次以上。  相似文献   

5.
以超临界CO2流体为浸渍介质,活性氧化铝为催化剂载体,硝酸镍为活性前躯体,用超临界流体CO2浸渍沉积技术制备了负载型Ni/Al2O3催化剂,并以葡萄糖加氢为模型反应考察了负载镍基催化剂的加氢性能.研究了超临界CO2流体的温度、压力及氢气还原温度对镍负载量及催化剂加氢活性的影响,用XRD对Ni/Al2O3催化剂进行了表征.结果表明:与传统水介质浸渍制备方法相比超临界流体浸渍可以有效提高活性组分镍的负载量,进而提高负载Ni/Al2O3催化剂的催化活性;在试验范围内,当超临界CO2的温度为60℃、压力为8 MPa时镍的负载量最佳,催化剂的还原温度为600℃时催化剂的活性最好,其活性为普通水浸渍方法制得样品的1.34倍.  相似文献   

6.
浸渍法制备了负载型Ru-Ce/TiO2催化剂,其能高效催化壬基酚加氢制备壬基环己醇.添加助剂Ce提高了催化剂对H2的吸附活化能力和酸性中心及其催化性能.优化的催化剂制备条件为:Ru负载量0.5%,Ce负载量0.3%,400℃焙烧5 h,150℃还原2 h.在优化的反应条件150℃,5 M Pa反应6 h,壬基酚转化率为...  相似文献   

7.
采用酸沉淀法制备大孔γ-Al2O3为载体,并用浸渍法制备Ni2P(25%)/γ-A12O3催化剂。BET、XRD、压汞法的分析结果显示:合成大孔γ-Al2O3载体晶型良好,且具有适宜比表面积和孔结构。催化剂经原位还原处理后,以柴油为原料在连续固定反应装置上,考察了催化剂的制备条件及反应条件对催化剂加氢脱硫活性的影响。结果表明:当载体合成温度为80℃,反应pH为8,反应条件为温度360℃、压力4.0MPa、空速1.0h-1、氢烃体积比500∶1时,催化剂的加氢脱硫活性最好,柴油的脱硫率可达98.2%。  相似文献   

8.
以顺酐和氢气为原料,以活性炭负载金属为催化剂,在加氢溶剂存在下,催化加氢制备丁二酸酐。考察了顺酐质量分数、氢分压、反应温度、反应时间和搅拌速度等对加氢反应效果的影响。在加氢溶剂存在下,顺酐质量分数30%,氢分压3.0MPa、催化剂质量分数为0.5%、反应温度80℃、反应时间为3h,搅拌速率200~250r/min的反应条件下,顺酐转化率在99%以上,丁二酸酐选择性大于90%,丁二酸酐收率大于80%。  相似文献   

9.
Pd(1.5wt%)/γ-Al2O3催化剂在催化对-氯硝基苯中硝基的选择性加氢反应时,当不往反应体系添加Sn4 离子,会有严重的脱氯反应发生;加入与Pd等物质量的Sn4 离子后,在温度70℃,氢压1.0 MPa,底物与Pd摩尔比为1 000,乙醇作溶剂的条件下,经过80 min反应,对-氯硝基苯全部转化,对-氯苯胺的选择性提高到95.5%.在上述条件下分别催化间-、邻-氯硝基苯加氢,底物全部转化时,间-、邻-氯苯胺选择性分别达95.9%、98.2%.  相似文献   

10.
以氟化钾为前驱体,硝酸铁为助催化剂,氧化锆为载体,浸渍法制备K-Fe/ZrO2固体碱催化剂,考察了焙烧温度、负载量对催化活性影响,采用X射线衍射(XRD)、透射电镜(TEM)和Hammett指示剂法等手段对催化剂进行表征,并对催化丙烯酸(AA)与环氧丙烷(PO)反应合成丙烯酸羟丙酯(HPA)的工艺进行了研究。结果表明:焙烧温度为500℃,负载量为40%时,催化剂的催化活性最高。合成丙烯酸羟丙酯适宜的工艺条件为:反应温度100℃,反应压力0.05~0.25MPa,催化剂用量为2.0%,n(AA)∶n(PO)=1.1∶1,反应时间为3.5h,在此条件下,环氧丙烷转化率达97.7%,丙烯酸羟丙酯产率达77.8%。  相似文献   

11.
采用酸沉淀法制备大孔γ-Al为载体,并用浸渍法制备NiP(25%)/γ-A1催化剂。BET、XRD、压汞法的分析结果显示:合成大孔γ-Al2O3载体晶型良好,且具有适宜比表面积和孔结构。催化剂经原位还原处理后,以柴油为原料在连续固定反应装置上,考察了催化剂的制备条件及反应条件对催化剂加氢脱硫活性的影响。结果表明:当载体合成温度为80℃,反应pH为8,反应条件为温度360℃、压力4.0MPa、空速1.0h-1、氢烃体积比500∶1时,催化剂的加氢脱硫活性最好,柴油的脱硫率可达98.2%。  相似文献   

12.
以(NH4)6Mo7O24.4H2O为钼源,以覆炭γ-Al2O3(CCA)为载体,采用浸渍法制备出催化剂前驱物Mo3O/CCA。以正己烷为渗碳剂对前驱物进行碳化得到Mo2C/CCA。对不同碳化终温下制得的催化剂进行了XRD表征。在固定床反应装置上进行了环己烷脱氢反应,考察了催化剂的制备条件及反应条件对催化剂脱氢活性的影响。结果表明:当载体CCA覆炭量为7.82%,碳化终温为650℃,反应条件为温度475℃、压力0.1 MPa、空速2h-1、氢烃体积比200∶1时,环己烷的转化率最高可达91%。  相似文献   

13.
采用溶胶—凝胶法及共浸渍法制备了TiO2-SiO2-Al2O3复合载体,并用共浸渍法制备负载型MoP/TiO2-SiO2-Al2O3催化剂。XRD结果表明,TiO2的晶相衍射峰呈锐钛矿,SiO2则大多以无定型态分散于γ-Al2O3晶体表面。通过原位还原技术对催化剂进行还原处理,在连续固定床反应器上进行活性评价,结果表明,钛硅铝物质的量比对催化剂的活性有很大的影响,在温度为360℃,压力为3MPa,液时空速为1h-1,氢油体积比为500∶1的反应条件下,n(Ti)∶n(Si)∶n(Al)为1∶1∶4,Mo负载量为20%时,MoP/TiO2-SiO2-Al2O3催化剂的加氢脱芳活性最高,达到65.6%。并且TiO2-SiO2-Al2O3三元复合载体比传统的γ-Al2O3和SiO2-Al2O3二元复合载体的活性分别提高了19.6%和13.6%。  相似文献   

14.
采用两段加氢技术,使碳五馏分油烯烃加氢饱和,通过对一段加氢产品和二段加氢产品分别用碘价和溴价分析研究得出两段加氢工艺各自最佳的工艺条件。实验结果表明,在一段加氢最佳工艺条件:压力为3MPa、反应温度为60℃、空速为2h-1、氢油体积比为300∶1和二段加氢最佳工艺条件:压力为3 MPa、反应温度为160℃、空速为2h-1、氢油体积比为200∶1下加氢试验后碳五馏分碘价由16.3g(I)/100g下降到了0.1g(I)/100g,双烯烃的饱和程度几乎达到100%,溴价由81.4g(Br)/100g下降到2.5g(Br)/100g。  相似文献   

15.
以对苯二胺、丁酮为原料,在自制的铜铬催化剂和氢气存在下合成了N,N′-二仲丁基对苯二胺。研究了催化剂的制作工艺,并考察了催化剂用量、反应温度、压力、反应时间对产物收率的影响,寻找到合适的催化剂制作工艺条件及抗氧剂的制备条件:硝酸铜、硝酸铬、硝酸钡按10∶10∶1质量比混合后,于400℃下分解1.5 h,然后经水洗活化制得催化剂;催化剂加入量占对苯二胺的质量分数为4%;反应温度160℃,压力3.3~5.6MPa,反应时间12 h,N,N′-二仲丁基对苯二胺收率超过95%。将合成的N,N′-二仲丁基对苯二胺加入汽油(30μg.g-1)中,汽油诱导期较加入常规的抗氧化剂明显增加。  相似文献   

16.
探讨以30%H2O2为氧源,H3PW12O40/ZrO2-WO3为催化剂对氧化环己酮合成己二酸反应的催化活性,较系统地研究了ZrO2-WO3负载磷钨酸的用量、反应温度、H2O2用量、反应时间等因素对产物收率的影响。实验表明:在n(环己酮)∶n(H2O2)∶n(H3PW12O40/ZrO2-WO3)=100∶294∶0.1,反应温度为110℃,反应时间3 h的最佳条件下,己二酸的收率可达44.7%。  相似文献   

17.
采用程序升温还原法(TPR)制备Pt/HZSM-5催化剂,并进行XRD表征。以不同催化裂化汽油馏分和正庚烷为原料,在小型连续固定床反应装置上考察了改性HZSM-5分子筛在一定条件下的芳构化性能。结果表明,当Pt的浸渍质量分数为0.5%,压力为1.5 MPa,温度450 ℃,氢油体积比为800∶1,体积空速为2.0 h-1时,Pt/HZSM-5催化剂对正庚烷的芳构化活性和稳定性最佳;当压力为1.0 MPa,温度为450 ℃,氢油体积比为800∶1,体积空速为2.0 h-1时,Pt/HZSM-5催化剂对催化裂化汽油50~100 ℃馏分和80~120 ℃馏分表现出较好的芳构化性能。  相似文献   

18.
以Fe2O3为活性组分,γ—Al2O3为载体,采用浸渍法制备了Fe2O3/Al2O3催化剂,并将其用于催化降解模拟聚丙烯酰胺(PAM)废水考察了催化剂制备条件对催化活性的影响,得出最佳制备工艺条件为:以Fe(NO3)3水溶液为浸渍液、活性组分负载量20%、焙烧时间3h、焙烧温度500℃在温度为60℃、pH=7.0、催化剂加入量为2g/L,H2O2的质量浓度为0.6g/L的条件下对质量浓度为400mg/L聚丙烯酰胺废水进行降解,反应90min后废水中聚丙烯酰胺相对分子质量降解率最高可达90%以上,CODcr去除率达86%,显示出了较高的催化活性.Fe2O3/Al2O3催化剂经过多次重复使用,催化活性基本没有降低,使用寿命长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号