首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study assessed the capacity of a musculoskeletal model to predict the relative muscle activation changes as a function of the workbench height and the movement direction during a simulated meat cutting task. Seven subjects performed a cutting task alternating two cutting directions for 20 s at four different workbench heights. Kinematics, electromyography (EMG), and cutting force data were collected and used to drive a musculoskeletal model of the shoulder girdle. The model predicted the muscle forces exerted during the task. Both the recorded and computed activation of the muscles was then compared by means of cross-correlation and by comparison of muscle activation trends with respect to the workstation parameters, i.e. cutting direction and workbench height. The results indicated that cutting movements involving arm flexion are preferable to movement requiring internal arm rotation and abduction. The optimal bench height for meat cutting tasks should be between 20 and 30 cm below the worker's elbow height. The present study underlines a beneficial use of musculoskeletal models for adjusting workstation parameters.  相似文献   

2.
Work-related neck disorders are common among various occupational groups. Despite clear epidemiological evidence for the association of these disorders with forceful arm exertions, the effect of such exertions on the biomechanical behavior of the neck muscles is currently not well understood. In this study, the effect of lifting tasks on the biomechanical loading of neck muscles was investigated for males and females. Twenty-six participants (13 males and 13 females) performed bi-manual isometric lifting tasks at knuckle, elbow, shoulder, and overhead heights by exerting 25%, 50%, and 75% of their maximum strength. The activity of the cervical trapezius and sternocleidomastoid muscles was recorded bilaterally using surface electromyography. Higher activity of the cervical trapezius muscle (10% MVC–43% MVC) compared to the sternocleidomastoid muscle (4% MVC–18% MVC) was observed. Females tend to use the sternocleidomastoid muscle to a greater extent than males, whereas, higher cervical trapezius muscle activation was observed for males than females. The main effect of weight and height, and weight by height interaction on the activity of neck muscles was statistically significant (all p < 0.001). The results of this study demonstrate that the neck muscles play an active role during lifting activities and may influence development of musculoskeletal disorders due to resulting physiological changes.  相似文献   

3.
Desk design and computer display height can affect posture and muscle activation during computer use. Amplitudes of postural variables and muscle activity during computer use do not explain the results from epidemiological studies of musculoskeletal discomfort and disorders related to computer use. The purpose of this study was to assess variability of posture and muscle activity during work with two computer display heights and book/paper, in conjunction with a curved desk designed to provide forearm support and a traditional, straight desk.18 male and 18 female participants performed 10-min tasks involving keying, mousing, reading and writing in six desk/display conditions. 3D posture and surface emg were assessed for the final 2 min of each task.The curved desk resulted in greater postural and muscle activity variation, suggesting an advantage of this supportive surface over the straight desk. There was little difference in variability associated with the two display heights. However, greater variability of posture and muscle activity was evident with the book/paper condition. Non-touch typists had greater neck flexion variation.The design of information technology tasks and workstations can influence the short term variation in posture and muscle activity. Variation is influenced independently of mean postures and muscle amplitudes and therefore needs to be considered to adequately assess the risk of musculoskeletal disorders.  相似文献   

4.
《Ergonomics》2012,55(7):1147-1158
In order to examine the effects of work surface height (WSH) on muscle activity, posture and discomfort during simulated pipetting, an experimental study was conducted using electromyography, electrogoniometry, video techniques and also qualitative data. The experimental design consisted of one independent variable (WSH with six heights) and 13 dependent variables. The levels of muscle strain and discomfort were significantly lower at the shoulder when the WSHs were low but thumb muscle activities and neck flexion levels were markedly higher at these WSHs compared to higher WSHs. To reduce shoulder strain, without raising thumb and neck strain beyond acceptable limits, the findings suggest that the height of a laboratory workbench should be at the level of the pipette tip when held in a standing position with the hand at elbow height. It was also found that pipetting should not be done in a seated posture.

Practitioner Summary: An experimental study was conducted to examine the effects of work surface height on upper extremity muscle activity, posture and discomfort during simulated pipetting. The findings suggest that the laboratory workbench height should be at the pipette-tip level when held in a standing position with the hand at elbow height.  相似文献   

5.
《Ergonomics》2012,55(5):748-761
Few musculoskeletal models are available to assess shoulder deeper muscle demand during overhead lifting tasks. Our objective was to implement a musculoskeletal model to assess the effect of lifting height and load on shoulder muscle work. A musculoskeletal model scaled from 15 male subjects was used to calculate shoulder muscle work during six lifting tasks. Boxes containing three different loads (6, 12 and 18 kg) were lifted by the subjects from the waist to shoulder or eye level. After optimisation of the maximal isometric force of the model's muscles, the bio-fidelity of the model was improved by 19%. The latter was able to reproduce the subjects’ lifting movements. Mechanical work of the rotator cuff muscles, upper trapezius and anterior deltoid was increased with lifting load and height augmentation. In conclusion, the use of a musculoskeletal model validated by electromyography enabled to evaluate the muscle demand of deep muscles during lifting tasks.  相似文献   

6.
《Ergonomics》2012,55(11):1412-1419

Use of forearm support is known to reduce physical stress of computer users, but research about how to properly position the forearm support is insufficient. This study was aimed to determine whether the height of forearm support influences muscular loads during typing. Twenty four subjects performed a typing task with a pair of articulating forearm support at three different heights as well as without any support, while shoulder, neck and forearm muscle activities and posture data were recorded. Typing with the support at resting elbow height produced significantly (p < 0.05) lower shoulder and neck muscle activities than that of no support condition. Typing with the support at heights higher than the resting elbow height produced significantly greater shoulder and neck muscle activities compared to the no support condition. Results suggest that forearm support can help computer users lessen physical stress in typing, but only when the supports are positioned at resting elbow height.

Practitioner Summary: Use of forearm support is known to alleviate physical stress of PC users in computer works such as typing. This experimental study addressed the importance of proper positioning of forearm support by comparing neck and upper extremity muscle activities between conditions with varying heights of forearm support in keyboard typing.  相似文献   

7.
The aim of the present study was to assess the activity levels of the sternocleidomastoid muscle and upper trapezius muscle during static postures under controlled and standardized conditions, and to determine whether the muscle activity differed between sexes. Electromyographic (EMG) activity was recorded unilaterally from the sternocleidomastoid and upper trapezius muscle in 17 participants whilst they were performing various postural tasks. EMG amplitude was measured by the root mean square values of the raw signals and normalized to peak maximum contractile values for each muscle (%MVC). The intensity of muscle activity was ranked as light (<3%MVC), moderate (3%MVC ≤ EMG ≤ 8%MVC), and substantial (>8%MVC). During most tasks the two muscles contracted light to moderately. Head leaning and shoulder shrugging postures yielded substantial muscle activity in both muscles. Muscle activity did not differ significantly between male and female participants (F = 3.1; p = 0.078). Our findings provided normative values, which will enhance future studies of muscle activity during work in a natural, unrestrained environment.  相似文献   

8.
During scanning, sonographers often assume significant awkward postures which may lead to musculoskeletal pain and disability. Two exoskeletons were tested as an ergonomic intervention by sonographers during transthoracic echocardiograms (TTE). Four sonographers each performed TTEs using right- and left-handed scanning techniques, with and without two different passive upper extremity exoskeletons in two two-by-two experimental designs. Posture, muscle activity, and subjective discomfort scores were recorded. Of the two exoskeletons tested, the updated FLEX® design significantly reduced 10th percentile upper trapezius muscle activity during left hand scanning, while the AIRFRAME® did not impact muscle activity across all the muscles of interest. Furthermore, there was a slight decrease in the self-reported discomfort levels in their wrist and hands associated with performing TTE when wearing Exos1 compared to baseline. However, participants experienced issues with comfort, limitations on their range of motion (ROM), and interference with tasks with both exoskeletons. Collectively, the results indicate that the tested exoskeleton designs provide minimal benefit for reducing upper extremity muscle workload during TTE ultrasonography tasks.  相似文献   

9.
The use of forearm and palm supports has been associated with lower neck and shoulder muscle activity as well as reduced musculoskeletal discomfort during keyboard use, however, few studies have investigated their effect during computer mouse use. Eight men and eight women completed several computer mousing tasks in six arm support conditions: Forearm Support, Flat Palm Support, Raised Palm Support, Forearm + Flat Palm Support, Forearm + Raised Palm Support, and No Support. Concurrently, an infrared three-dimensional motion analysis system measured postures, six-degree-of-freedom force-torque sensors measured applied forces & torques, and surface electromyography measured muscle activity. The use of forearm support compared to the no support condition was significantly associated with less shoulder muscle activity & torque, and the raised palm support was associated with less wrist extension. Forearm supports reduced shoulder flexion torque by 90% compared to no support. The use of either support also resulted in lower applied forces to the mouse pad. Participants reported less musculoskeletal discomfort when using a support. These results provide recommendations for office workstation setup and inform ergonomists of effective ways to reduce musculoskeletal exposures.  相似文献   

10.
BackgroundEpidemiologic studies have consistently demonstrated a strong positive association between repetition and “occupational overuse syndromes” (OOS). The repetitive nature of painting then can predispose many people to these disorders.ObjectiveThe purpose of this study was to conduct an electromyographic analysis (EMG) comparing a right angle handle paint applicator with a commonly used, equal quality standard handle paint brush.MethodA randomized cross over repeated measures design was implemented where 30 volunteers were randomly given a paint brush handle type while muscle activity (EMG) was recorded from eight upper limb muscles groups. Subjects were their own controls returning within one week to perform the same painting activity with the other paint brush handle type. ANOVA with repeated measures was used to analyze the EMG data among muscles between the two painting trials.ResultsEMG analysis revealed that there was no difference in EMG activity or median frequency between the two types of paint brush handles in the eight muscles studied (p > 0.05).ConclusionA right angle handle has no added ergonomic advantage in modifying muscle activity or decreasing muscle fatigue over a commonly used standard handle paint brush in people without injury. It was suggested that the right angle style brush may not prevent OOSs from occurring, although there still could be a decrease risk of injury based on the posture used when gripping the brush handle. It must be emphasized, however, that this study's results cannot be extrapolated to people who already have an OOS and need a device to prevent further injury and pain. Further study is needed.  相似文献   

11.
A review of the scientific literature reveals little research on the ergonomics of handsaws and no literature on the specific challenges of arborist saws (saws for cutting and pruning living trees). This study was designed to provide some insight into the effects of saw design and height of sawing activity on the biomechanical response of the upper extremity. Eighteen participants performed a simple sawing task at three different heights using six different arborist handsaws. As they performed this task, the electromyographic activity of several muscle groups of the forearm (flexor and extensor digitorum), arm (biceps brachii long and short heads) and shoulder girdle (posterior deltoid, infraspinatus and latissimus dorsi) were sampled. Also gathered were the wrist postures in the radial/ulnar plane at the beginning and ending of the sawing stroke, the time to complete the sawing task and a subjective ranking of the six different saws. The results show an interesting mix of biomechanical and subjective responses that provide insight into handsaw design. First, there were tradeoffs among muscle groups as a function of work height. As work height increased the biceps muscles increased their activation levels (∼19%) while the posterior deltoid activity decreased (∼17%) with the higher location. The results also showed the benefits of a bent handle design (average 21% reduction in ulnar deviation). The subjective responses of the participants generally supported the productivity data, with the saws demonstrating the shortest task completion time also being the ones most highly ranked.

Relevance to Industry

Understanding the stresses placed on the upper extremity during sawing activities, and design features that can reduce these stresses, may help saw designers to create products that reduce the risk of injury in workers who use handsaws.  相似文献   

12.
While using their smartphone, users tend to adopt awkward neck and shoulder postures for an extended duration. Such postures impose the risk of MSDs on those body parts. Numerous studies have been undertaken to examine neck posture; however, few studies have investigated shoulder postures. This study examined various shoulder postures during smartphone use and their effect on neck and shoulder kinematics, muscle loading, and neck/shoulder discomfort. Thirty-two asymptomatic young adult smartphone users randomly performed texting tasks for 3 min at four different shoulder flexion angles (15°, 30°, 45°, and 60°), while maintained a neck posture in the neutral position (0° neck flexion angle). Measures were taken of neck and shoulder muscle activity of the cervical erector spinae (CES), anterior deltoid (AD), upper trapezius (UT) and lower trapezius (LT), and kinematic data (angle, distance and gravitational moment). Results showed AD and LT muscle activity significantly increased when the shoulder flexion angle increased with an opposite effect on CES and UT. A recommended shoulder posture was identified as 30° flexion, as this yielded the best compromise between activation levels of the four muscles studied. This angle also induced the lowest neck/shoulder discomfort score. The findings suggest smartphone users hold their device at approximately 30° shoulder flexion angle with their neck in a neutral posture to reduce the risk of shoulder and neck musculoskeletal disorders when smartphone texting.Relevance to industrySmartphone use in the manufacturing and service industries is an integral part of work and useful means of communication tool. Awkward postures during extensive smartphone use impose an increased risk of both neck and shoulder musculoskeletal disorders. Shoulder flexion angles need consideration when making recommendations about safe work postures during smartphone use.  相似文献   

13.
Musculoskeletal disorders are more common among women than among men. When comparing the difference between men and women in the prevalence of musculoskeletal disorders, methodological problems arise as men and women seldom perform the same type of activities, neither at work nor at home.

The main objective of this cross-sectional case study was to compare work technique and self-reported musculoskeletal symptoms between men and women performing the same type of work tasks within a metal industry. Other factors, such as leisure activities, were also taken into consideration. Three data collection methods were used; questionnaire, interviews and systematic observations. The results from the observations revealed that women worked more frequently and during longer times with their hands above shoulder height than men. Working with hands above shoulder height is considered a risk factor for neck and shoulder disorders according to previous studies. Workplace design factors were probably a reason for differences in working technique between men and women. A higher proportion of women than men reported shoulder symptoms. Women spent more time on household activities than men, which indicates a higher total workload in paid and unpaid work.  相似文献   


14.
《Ergonomics》2012,55(9):1144-1152
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18–25%) and muscle activity (by 15–30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.  相似文献   

15.
Workspace design can often dictate the muscular efforts required to perform work, impacting injury risk. Within many environments, industrial workers often use sub-maximal forces in offset directions in to accomplish job tasks. The purpose of this research was to develop methods to estimate shoulder muscle activation during seated, static, sub-maximal exertions in off-axis (non-cardinal) directions. Surface EMG signals were recorded from 14 upper extremity muscles in 20 right-handed university aged, right-handed males (age: 22 ± 3 years, weight: 77.5 ± 11.1 kg, height 179.0 ± 7.0 cm) participated in this study. Each participant performed 60 submaximal exertions (40N) directed at 4 off-axis phase angles of 45° (45°, 135°, 225°, and 315°) in 3 planes (frontal, sagittal, and transverse) in 5 hand locations within a right handed reach envelope. The influence of hand location and force direction on muscle activity was evaluated with a forced-entry stepwise regression model. The ability of previously published on-axis prediction equations to predict muscle activity during these off-axis exertions was also evaluated. Within each muscle, activity levels were affected by both hand location and three-dimensional force direction and activation levels ranged from <1 to 37 %MVE. For each force direction there were 75 predictive equations selected and used, and the specific equation that best predicted activation depended on the muscle, exertion direction and hand location evaluated. This work assists ergonomic workplace design to minimize muscle demands during commonly performed off-axis exertions. These estimated demands can be employed to improve workplace design to reduce workplace injuries and enhance worker productivity.  相似文献   

16.
Tablet computers have become ubiquitous. There is a serious risk that using tablets may lead to musculoskeletal disorders. This research aims to investigate, for tablet computer users, the musculature load and comfort perception of the engaged upper extremity for three angles of viewing and common task types performed at a computer workstation. Thirty healthy adults were recruited. A 3 × 2 repeated experimental design with tilt angle (22.5°, 45°, and 67.5° from horizontal) and task type (movie watching vs. game playing) was employed. The muscular activity of the upper extremity was assessed by electromyography measurement. Subjective comfort ratings were collected using the visual analogue scale. The results showed that when tablets were mounted at a high tilt angle (67.5°), neck muscle activity was low; however, when the tablet computer was mounted at a low tilt angle (22.5°), shoulder forward flexion activity was low, particularly during the game-playing task. This article suggests that users who feel musculoskeletal discomfort in the neck area increase the angle of their tablet computers to decrease neck stress and that users who have musculoskeletal discomfort in the shoulder area position the tablet computer at a lower tilt angle to decrease shoulder stress.  相似文献   

17.
《Ergonomics》2012,55(8):1326-1335
In this study, the effect of container handle parameters on shoulder and upper limb muscle activity and joint posture during a pouring task is investigated. Results indicated that a low handle position and a vertical handle slope minimised the loading of the shoulder muscles. A high and sloped handle minimised the muscle activity and wrist deviation of the lower arm. The effects of diameter were not significant for most dependent variables during the lifting phase of the task; however, beneficial effects were seen with the smallest handle diameter during the pouring phase. A trade-off existed between the shoulder and the hand/wrist posture with the different handles. The findings of significance with relatively small effect size suggest a high sensitivity of the system to any changes. In the real world, speed, space and work conditions are important factors that influence how a task is performed. This emphasises the importance of proper handle design.

Practitioner Summary: In this study, the effect of container handle design on the muscle activity and postures of the upper extremity during a pouring task were analyzed using the experimental data collected from electromyography and motion tracking systems. The low handle height and vertical handle slope design yielded the lowest shoulder muscle activity.  相似文献   

18.
《Ergonomics》2012,55(1):83-91
Overhead work has established links to upper extremity discomfort and disorders. As many jobs incorporate working overhead, this study aimed to identify working conditions requiring relatively lower muscular shoulder load. Eleven upper extremity muscles were monitored with electromyography during laboratory simulations of overhead work tasks. Tasks were defined with three criteria: work configuration (fixed, stature-specific); target angle (?15°, 0°, 15°, 30° from vertical); direction of applied hand force (pulling backwards, pushing forwards, downwards, sideways, upwards). Normalised electromyographic activity was greater for fixed configurations, particularly when pulling in a backward direction (total activity = 108.3% maximum voluntary exertion (MVE)) compared to pushing down or forward (total activity ranging from 10.5 to 17.3%MVE). Further, pulling backwards at angles of –15° and 0° showed the highest muscular demand (p < 0.05). These results suggest that, if possible, positioning overhead work in front of the body with exertions directed forwards will result in the lowest upper extremity muscle demand.

Statement of Relevance: Overhead work pervades occupational settings and is associated with risk of upper extremity musculoskeletal disorders. The muscular intensity associated with performing overhead work was assessed in several combinations of work placement and hand force direction. These findings should have utility for designing overhead work tasks that reduce muscular exposure.  相似文献   

19.
《Ergonomics》2012,55(3):377-390
In pushing and pulling wheeled carts, the direction of force exertion may, beside the force magnitude, considerably affect musculoskeletal loading. This paper describes how force direction changes as handle height and force level change, and the effects this has on the loads on the shoulder and low back. Eight subjects pushed against or pulled on a stationary bar or movable cart at various handle heights and horizontal force levels while walking on a treadmill. The forces at the hands in the vertical and horizontal direction were measured by a forcetransducer. The forces, body movements and anthropometric data were used to calculate the net joint torques in the sagittal plane in the shoulder and the lumbosacral joint. The magnitudes and directions of forces did not differ between the cart and the bar pushing and pulling. Force direction was affected by the horizontal force level and handle height. As handle height and horizontal force level increased, the pushing force direction changed from 45° (SD 3.3°) downward to near horizontal, while the pulling force direction changed from pulling upward by 14° (SD 15.3°) to near horizontal. As a result, it was found that across conditions the changes in force exertion were frequently reflected in changes in shoulder torque and low back torque although of a much smaller magnitude. Therefore, an accurate evaluation of musculoskeletal loads in pushing and pulling requires, besides a knowledge of the force magnitude, knowledge of the direction of force exertion with respect to the body.  相似文献   

20.
Muscle fatigue is a significant cause of musculoskeletal injury and can easily induce unsafe behaviour. Push-type work is a common type of physical work, and if not designed appropriately, may lead to muscle fatigue. Previous studies on muscle fatigue mainly focus on investigating continuous force exertion, and in most of them, a constant muscle force is assumed, thereby ignoring the fluctuations present in exertion. In this study, bolt hole drilling was chosen to represent typical push-type work, and the muscle fatigue from this work was examined. The experimental system designed in this study monitored the muscle force in real time. In the experiments, different thrust angles (15°, 45°, and 75°), different relative force values (20% MVC, 40% MVC, and 60% MVC; MVC: maximum voluntary contraction) and different working time intervals (0 s, 30 s, 60 s, and 90 s) were considered. The results demonstrate that there is a significant positive correlation between the rating of perceived exertion (RPE) and muscle force attenuation (r = 0.786, p = 0). The cubic regression model (Y = − 0.00071x3 − 0.024x2 − 0.334x + 1.146, R2 = 0.639) fits the data most closely. Therefore, force attenuation can be used as a real-time indicator of muscle fatigue. In addition, the relative force value and thrust angle have a significant impact on the RPE score, whereas the working time interval has no major effect on it. This study provides a new method for evaluating muscle fatigue and a basis for the design of push-type work to reduce fatigue-induced accidents and musculoskeletal injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号