首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
青藏高原气温变化的研究进展   总被引:1,自引:0,他引:1  
王楠  李栋梁  张杰 《干旱气象》2010,28(3):265-269,290
青藏高原(简称高原,下文同)是全球气候系统的重要组成部分,其气候因子、动力及热力作用对全球气候系统的变化有着深刻的影响。本文就近代高原地表气温不同年代际的变化、空间分布及其与我国其它区域同期气温变化的关系等方面的研究进展进行回顾和总结。经过研究分析表明,高原的气温变化呈明显的年代际特征。近百年来高原的气温可分2个冷期2个暖期,其间有3次突变,即1920年代以前偏冷,1920~1950年代气温回升,1950~1980年代气温下降,1980年代至今气温持续偏高。各次气温突变时间中高原均提前于我国其它地区,且全国有北方提前于南方,高纬提前于低纬的现象;高原上大多数区域日最低气温增温幅度是日最高温度的增温幅度的1~3倍,日较差变小,4季中冬季增温最为明显;由于地域辽阔,地形复杂,就高原本身主体而言,各区域的温度变化也存在差异。已有的研究成果表明,高原主体的气温变化最先出现在高原东南部和海拔较高的区域。  相似文献   

2.
青藏高原气温变化及其异常类型的研究   总被引:31,自引:16,他引:31  
利用青藏高原81个气象台站近30年年平均气温、午平均最高、最低气温资料,采用EOF、REOF、气候线性趋势分析以及累积距平法等方法对青藏高原气温的时空分布特征及其异常类型进行了分析。结果表明:青藏高原年平均气温、年平均最高、最低气温空间变化在具有很好的主体一致性的同时,存在着南北及东西分布的差异,大地形特别是高原主要山脉走向对气温的空间分布具有十分明显的影响;其年际波动呈现出明显的上升趋势,并在20世纪80年代中后期发生过突变;其空间异常类型主要受地形和冷空气活动的影响较为显著。  相似文献   

3.
青藏高原那曲地区冻融过程的数值模拟研究   总被引:3,自引:0,他引:3  
利用中国科学院那曲高寒气候环境观测研究站冻融期(2013年3月1日至6月1日)的气象和土壤观测资料,通过陆面模式Co LM对那曲地区土壤冻融过程进行了数值模拟。模拟结果表明,Co LM模式对土壤温度、感热通量和潜热通量的模拟与观测较吻合,但对土壤湿度的模拟偏差较大,而模式冻融参数化方案的不足是造成这一较大偏差的主要原因。根据热力学平衡下土壤水势与温度之间的关系以及Clapp-Hornberger经验公式对冻融参数化方案进行了优化,优化冻融参数化方案后,模式能够更真实地模拟出土壤冻融过程特征,尤其是对土壤湿度偏低的现象改进较大。  相似文献   

4.
李跃清  李崇银 《高原气象》2003,22(10):24-31
应用奇异值分解(SVD)和相关分析方法,研究了青藏高原东侧川渝地区气温变化及其原因。结果表明:夏季川渝地区气温与云量之间主要呈反位相关系,其第一模态代表了它们最主要的耦合特征;热带西太平洋海温偏暖(冷),引起副热带高压系统位置偏北(南),使川渝地区总云量偏少(多),造成川渝地区气温偏高(低)。最后建立了川渝地区夏季气温变化的概念模型,指出热带西太平洋海温异常变化,也是造成青藏高原东侧川渝地区气温变冷的主要原因之一。  相似文献   

5.
该文利用EOF分解得到的1982—2001年西南地区夏季平均、最高和最低气温的时空特征显示, 西南地区夏季平均、最高气温的时空变化具有很好的一致性, 尤其是川渝地区20世纪80年代为气温负距平, 90年代开始有明显升温。利用GIMMS NDVI和西南4省市96个台站的气温资料进行了相关分析、合成分析以及SVD分析, 得到前期冬季青藏高原植被影响该区夏季气温的滞后关系以及影响较大的区域。结果表明:西南地区夏季平均气温、最高气温对青藏高原冬季植被变化较敏感, 其中青藏高原西部NDVI与西南地区夏季气温的相关强于东部; 青藏高原NDVI异常偏高对应西南地区夏季气温偏高, 其中最高气温升高较明显, 增温最大值出现在7月, 位于西南地区北部; 青藏高原冬季植被变化与西南地区平均气温、最高气温和最低气温的最佳耦合模态中影响程度及关键区域略有差异, 青藏高原冬季NDVI与夏季平均气温关系最密切, 其中青藏高原东北大部分地区和南部 (包括拉萨及林芝东部地区) 的影响最大, 气温对前期青藏高原NDVI变化反应的敏感区主要位于四川盆地及其附近地区。  相似文献   

6.
李云康  余义然 《四川气象》1995,15(1):28-30,22
利用1973年达县降水,气温及500hPa位势高度场的5天平均资料,分析了青藏高原30-60天振荡与川东降水和气温的关系,结果表明,川东地区降水与青藏高原500hPa位势高度场30-60天振荡呈反位相关系,夏季(4-8月)气温与高原500hPa位势高度场30-60天振荡呈同位相关系。  相似文献   

7.
利用1961—2018年新疆103站逐月气温及NECP/NCAR逐月平均再分析资料,基于汤懋苍等定义的青藏高原季风指数,分析了青藏高原冬季风异常强、弱年及其变化特征,揭示了高原冬季风异常影响新疆塔里木盆地冬季气温的可能机制。结果表明:近57 a来,青藏高原冬季风略增强,高原冬季风指数与新疆冬季气温呈显著负相关,高原冬季风偏强有利于新疆冬季气温偏高,反之亦然。高原冬季风指数与新疆冬季气温之间的相关性存在明显区域差异,其中南疆高于北疆,西部高于东部,平原高于山区。南疆塔里木盆地冬季气温变化受高原冬季风影响最显著,而年际变化受高原冬季风异常的影响更强。青藏高原冬季风异常偏强年,850 hPa上中亚区域以及蒙古高原都有弱距平暖平流影响新疆;500 hPa上新疆位于位势高度正距平区,乌拉尔山北部为负距平区,欧亚50°N以北区域盛行西风气流,不利于北方冷空气南下影响塔里木盆地。高原冬季风异常偏弱年,850 h Pa上新疆受距平冷平流影响;500 hPa上乌拉尔山脊发展,引导冷空气南下入侵塔里木盆地。  相似文献   

8.
青藏高原东侧地区夏季气温变化及其可能成因   总被引:4,自引:2,他引:4  
李跃清  李崇银 《高原气象》2003,22(Z1):24-31
应用奇异值分解(SVD)和相关分析方法,研究了青藏高原东侧川渝地区气温变化及其原因.结果表明夏季川渝地区气温与云量之间主要呈反位相关系,其第一模态代表了它们最主要的耦合特征;热带西太平洋海温偏暖(冷),引起副热带高压系统位置偏北(南),使川渝地区总云量偏少(多),造成川渝地区气温偏高(低).最后建立了川渝地区夏季气温变化的概念模型,指出热带西太平洋海温异常变化,也是造成青藏高原东侧川渝地区气温变冷的主要原因之一.  相似文献   

9.
青藏高原多年冻土区典型下垫面冻融过程作用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用青藏高原腹地安多站土壤观测资料,根据10cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,并结合感热通量、积雪深度、相对湿度和降水资料定性的探讨了冻融过程对地气热量、水分交换的影响。结果表明:各层土壤在东亚季风爆发前期由上至下完成融化过程,10月中旬~12月上旬完成冻结过程,融化期普遍长于冻结期。土壤湿度大值区在时间上集中在高原雨季,空间上10cm深度以上为湿度大值区,而且上层土壤的温度梯度要明显大于下层。在融化阶段整层土壤的温度长期保持0℃的等温相变现象,此时,表层土壤温度日变化幅度为全年最大,最高日变幅达22.5℃。安多站地面除12月个别天数和1月上旬是冷源外,全年为地面热源,近地面感热通量从1月开始增大,到6月上旬达到峰值,之后逐渐减小。同时,感热通量的变化对相对湿度、降水和积雪的变化较为敏感。   相似文献   

10.
赵红旭 《气象》1999,25(4):48-51
利用青藏高原积雪深度资料分析了青藏高原冬季1月平均积雪深度与云南夏季气温、降不的联系。结果表明:青藏高原冬季积雪与云南夏季气温和降水有较好的联系,即青藏高原冬季1月积雪峰值年对应云南北部7-8月气温低谷年,云南夏季易出现“8月低温”天气;青藏高原积雪多的年份,昆明夏季6-8月降水异常偏我,云南大部7月降水异常偏多,云南哀牢山脉以北、以东地区8月降水异常偏多。500hPa异常环流分析表明,冬季青藏高  相似文献   

11.
青藏高原东部土壤冻融过程中地表粗糙度的确定   总被引:3,自引:1,他引:3       下载免费PDF全文
利用黄河源区气候与环境综合观测研究站2006年10月—2007年4月的湍流观测资料和一种新的方法,计算了青藏高原东部玛曲地区土壤冻融过程中的地表粗糙度。结果表明:所用的计算粗糙度的方法是可行的,玛曲土壤未冻结阶段、冻结阶段和融化后阶段的地表粗糙度分别为3.23×10-3m,2.27×10-3m和1.92×10-3m,地表粗糙度呈逐渐减小的趋势。三阶段地表粗糙度有明显区别,以前将冬季前后的粗糙度取为定值的计算会导致一定的误差。  相似文献   

12.
CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究   总被引:2,自引:0,他引:2  
陈渤黎  吕世华  罗斯琼 《高原气象》2012,31(6):1511-1522
利用通用陆面过程模式(CLM3.5)和青藏高原玛曲站2010年6月-2011年2月的观测资料进行了9个月的单点数值模拟试验。通过比较辐射通量、能量通量、土壤温度及土壤含水量的模拟值和观测值,结果表明,CLM3.5模式能较成功地模拟玛曲地区的陆面能量与水分特征。该模式对夏季向上短波辐射的模拟较好,冬季整体偏小。向上长波辐射的模拟整体较好,但模拟值稍偏大。净辐射的模拟整体较好,模拟值与观测值的相关系数为0.99,偏差为-1.28 W.m-2。感热通量的模拟较差,整体显著偏高。潜热通量的模拟较好,随季节变化特征明显。土壤热通量的模拟夏季较好,冬季土壤冻结及消融期的偏差较大,主要原因与冬季模拟的积雪偏少有关。土壤温度的模拟夏季较好、冬季较差,6层土壤温度模拟值与观测值的相关系数均在0.98以上,平均偏差为-1.80℃。模式较好地模拟出了冬季土壤冻结后存留的未冻水,冻结后土壤含水量的模拟较该模式以前的版本有了很大的改善,6层土壤含水量模拟值与观测值的平均相关系数为0.94,平均偏差为-0.015m3.m-3。  相似文献   

13.
青藏高原地表温度的变化分析   总被引:51,自引:15,他引:51  
利用青藏高原86个气象观测站建站~2001年历年各月地面0cm温度资料,在分析高原冬季、夏季和年平均地表温度基本气候特征的基础上,通过主成分分析、主值函数和功率谱分析等方法,对高原地表温度异常变化的空间结构和时间演变趋势作了诊断研究。结果表明:高原地表温度主要受海拔高度与纬度的影响,海拔越高温度越低,纬度越高温度越低。年平均温度最高值在雅鲁藏布江河谷的察隅为14.9℃;夏季平均温度最高值在柴达木盆地的格尔木为23.0℃。高原外围的南疆盆地南缘,川西温度更高,但其中心不在高原。高原地表温度最低值在中部的托托河、五道梁,年平均温度为-0.2℃,冬季更低,平均为~14.2~-15.8℃;夏季平均地表温度最低值在清水河为9.8℃,7月平均温度为10.7℃。高原地表温度第一载荷向量除南部小范围为负值外,大部分地方为一致的正值,即第一空间尺度表现为整体一致性;第二空间尺度有南正(负)北负(正)之差异。第一主分量在近30年中表现为明显的上升趋势,主要反映了高原主体偏北和东北部地区地表温度显著升温趋势,而第二主分量的缓慢下降说明高原中部和东南部地表温度呈下降趋势。代表站温度变化表现出准3年和准6年的周期振荡。铁路线北段和南段线性升温率较大,在0.42~0.58℃/10a之间;铁路线中段的高海拔地区升温率较小,为0.32~0.39℃/10a。  相似文献   

14.
青藏高原气温与印度洋海温遥相关的初步研究   总被引:1,自引:0,他引:1  
张平  高丽  毛晓亮 《高原气象》2006,25(5):800-806
利用1960—2000年青藏高原54个常规气象观测站的年平均地面气温资料,考察了高原气温的空间分布和气候变异特征;利用同期印度洋海温资料和奇异值分解方法,着重研究了青藏高原气温与印度洋海温之间的遥相关关系,并初步探讨了物理机制问题。分析结果表明:在空间分布上,青藏高原气温中部低,四周高,41年来呈逐步上升趋势,振幅不断加大;高原气温与印度洋海温之间存在显著的主要遥相关模态,这与印度洋海温异常激发遥相关波列影响到高原气温有关。  相似文献   

15.
初冬青藏高原冻土过程的数值模拟   总被引:2,自引:4,他引:2  
利用改进了的加进NCAR陆面过程(LSM)的NCAR MM5大气模式中的土壤冻融过程参数化方案和2001年10月2~30日的NCEP再分析资料,对青藏铁路沿线区域进行数值模拟试验。在新方案中改进了土壤径流和土壤渗透影响土壤层的水文过程,增加了对土壤含冰量的求解,较真实地反映了土壤的冻融过程。模拟结果表明,改进土壤冻融过程方案后,模式对地温、地面通量的模拟有一定的改进,能够反映土壤冻结初期陆面要素场的变化。  相似文献   

16.
青藏高原近代气温变化趋势及突变分析   总被引:37,自引:27,他引:37  
马晓波  李栋梁 《高原气象》2003,22(5):507-512
利用青藏高原84个气象站建站至2001年的月平均气温资料,分析了40年来气温变化的时空分布特征及趋势,揭示了高原大部分地区平均气温和最高、最低气温普遍升高,最低气温上升速率是最高气温的1倍~3倍,气温日较差显著减小;青藏高原各区的气温突变多发生在20世纪80年代,大部分地区早于北半球1988年的气温突变,平均气温和最高、最低气温的突变在各区都有发生,平均气温突变开始于柴达木盆地(1973年),最高、最低气温及气温日较差(DTR)分别开始于高原东部、柴达木盆地和高原南部等地;不同季节的突变随时间地点而有所变化。  相似文献   

17.
青藏高原温泉群对高原平均温度场的贡献   总被引:2,自引:2,他引:2  
江灏  汤懋苍  高晓清 《高原气象》2003,22(6):640-642
用线性回归法消除青藏高原地面气温场中的背景场后,发现雅鲁藏布江和川西高原是两块高温区,它与高原温泉密集区相合。根据地面能量平衡方程估算的地热通量与羊八井地区实测地热释放参数估算的结果均支持温泉群的地热释放可维持全年l~2℃的附加增温。  相似文献   

18.
青藏高原上空气溶胶含量的分布特征及其与臭氧的关系   总被引:2,自引:5,他引:2  
采用1991年10月—2005年11月的HALOE资料,分析了青藏高原(27°~40°N,75°~105°E)上空气溶胶数密度、体积密度、面积密度的分布和变化特征,探讨了它们与臭氧的关系,并且与同纬度带中国东部地区(107°~122°E,27°~40°N)、北太平洋(170°E~170°W,27°~40°N)上空进行了对比。结果表明:高原上空气溶胶的体积密度、面积密度受Pinatubo火山喷发的影响主要发生在1991—1995年,然而气溶胶数密度受火山影响则不如前二者明显;高原上空气溶胶在对流层顶附近存在一个极大值区,在夏季该极大值区位于对流层顶下方(约120 hPa),而其他季节则位于对流层顶上方(约100hPa);青藏高原、中国东部地区、北太平洋三地上空气溶胶数密度的差异主要出现在60 hPa以下的气层,夏季差异最突出,高原上120 hPa附近的气溶胶数密度约为平原上的1.8倍,约为海洋上的5.5倍;在高原上空对流层顶附近以及平流层低层,气溶胶数密度与臭氧体积混合比呈很好的负相关关系,而在20 hPa以上则有明显的正相关关系;对比三地上空气溶胶与臭氧的关系,得到在对流层顶附近及平流层低层气溶胶在高原和平原上空与臭氧的变化呈很好的负相关,其中以高原上空的负相关关系更好,但是在海洋上空气溶胶和臭氧的相关不明显。而在20 hPa以上气层中,三地上空的气溶胶与臭氧的变化都具有很好的正相关关系。  相似文献   

19.
青藏高原暖季与冷季气温的时空演变分析   总被引:3,自引:0,他引:3  
;利用1974—2003年青藏高原地区海拔高度>3000 m以上的49个气象站月平均气温,分析了暖季与冷季气温的时空演变特征。结果表明,青藏高原暖季气温的空间分布可以分为三部分:大致在85°E以西的高原西部地区,大致以85°E和33°N为界的高原东北部地区和高原东南部地区;西部高温区、柴达木盆地高温区和藏南高温带很明显。冷季气温的空间分布基本上为南暖北冷,南北分界大约在32°N。青藏高原暖、冷季气温空间分布有较一致的年代际变暖现象,主要表现在北部地区,尤其是西北部地区。青藏高原北部暖季升温明显,五道梁站暖季长期升温趋势为0.035℃/a;青藏高原南部冷季升温明显,拉萨站冷季长期升温趋势达0.060℃/a。青藏高原暖、冷季气温为大体一致的年际变化,江河源区有明显的高值区,为气温变化的关键区;暖、冷季气温长期变化趋势虽然都是上升的,但近10年的变化趋势却相反,暖季为降温趋势,冷季为明显的增温趋势。  相似文献   

20.
青藏高原上空氮氧化物的分布特征及其与臭氧的关系   总被引:6,自引:4,他引:6  
利用1992—2002年的HALOE资料,选取青藏高原地区(28°~40°N,75°~105°E)的数据,分析了青藏高原地区NOX混合比的垂直分布特征,并对高原地区不同高度上NOX混合比与同纬度及同经度地区进行了比较,分析了NOX混合比与臭氧混合比纬向分布的关系,以及NOX混合比随时间的变化和O3混合比变化的关系。结果表明:青藏高原地区在300~30 hPa上夏季NOX的混合比高于冬季的混合比;夏季青藏高原地区200~30 hPa气层上NOX的混合比比同纬度其它地区高得多,100~60 hPa气层上NO2混合比比同经度其它地区也高得多;在100~30 hPa上,O3的纬向分布与NOX的纬向分布之间存在较明显的反相关关系;高原地区100 hPa附近和70~35 hPa之间夏季NOX混合比的变化与O3混合比的变化的反相关关系非常好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号