共查询到2条相似文献,搜索用时 0 毫秒
1.
Abstract. Conventional unit root tests are known to be unreliable in the presence of permanent volatility shifts. In this paper, we propose a new approach to unit root testing which is valid in the presence of a quite general class of permanent variance changes which includes single and multiple (abrupt and smooth transition) volatility change processes as special cases. The new tests are based on a time transformation of the series of interest which automatically corrects their form for the presence of non‐stationary volatility without the need to specify any parametric model for the volatility process. Despite their generality, the new tests perform well even in small samples. We also propose a class of tests for the null hypothesis of stationary volatility in (near‐) integrated time‐series processes. 相似文献
2.
Abstract. We obtain new models and results for count data time series based on binomial thinning. Count data time series may have non‐stationarity from trends or covariates, so we propose an extension of stationary time series based on binomial thinning such that the univariate marginal distributions are always in the same parametric family, such as negative binomial. We propose a recursive algorithm to calculate the probability mass functions for the innovation random variable associated with binomial thinning. This simplifies numerical calculations and estimation for the classes of time series models that we consider. An application with real data is used to illustrate the models. 相似文献