首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintaining both overview and detail while navigating in graphs, such as road networks, airline route maps, or social networks, is difficult, especially when targets of interest are located far apart. We present a navigation technique called Dynamic Insets that provides context awareness for graph navigation. Dynamic insets utilize the topological structure of the network to draw a visual inset for off‐screen nodes that shows a portion of the surrounding area for links leaving the edge of the screen. We implement dynamic insets for general graph navigation as well as geographical maps. We also present results from a set of user studies that show that our technique is more efficient than most of the existing techniques for graph navigation in different networks.  相似文献   

2.
We present a dimension reduction and feature extraction method for the visualization and analysis of function field data. Function fields are a class of high-dimensional, multi-variate data in which data samples are one-dimensional scalar functions. Our approach focuses upon the creation of high-dimensional range-space segmentations, from which we can generate meaningful visualizations and extract separating surfaces between features. We demonstrate our approach on high-dimensional spectral imagery, and particulate pollution data from air quality simulations.  相似文献   

3.
When performing daily maintenance and repair tasks, technicians require access to a variety of technical diagrams. As technicians trace components and diagrams from page-to-page, within and across manuals, the contextual information of the components they are analyzing can easily be lost. To overcome these issues, we have developed a Schematic Diagram Visualization System (SDViz) designed for maintaining and highlighting contextual information in technical documents, such as schematic and wiring diagrams. Our system incorporates various features to aid in the navigation and diagnosis of faults, as well as maintaining contextual information when tracing components/connections through multiple diagrams. System features include highlighting relationships between components and connectors, diagram annotation tools, the animation of flow through the system, a novel contextual blending method, and a variety of traditional focus+context visualization techniques. We have evaluated the usefulness of our system through a qualitative user study in which subjects utilized our system in diagnosing faults during a standard aircraft maintenance exercise.  相似文献   

4.
Word clouds are proliferating on the Internet and have received much attention in visual analytics. Although word clouds can help users understand the major content of a document collection quickly, their ability to visually compare documents is limited. This paper introduces a new method to create semantic‐preserving word clouds by leveraging tailored seam carving, a well‐established content‐aware image resizing operator. The method can optimize a word cloud layout by removing a left‐to‐right or top‐to‐bottom seam iteratively and gracefully from the layout. Each seam is a connected path of low energy regions determined by a Gaussian‐based energy function. With seam carving, we can pack the word cloud compactly and effectively, while preserving its overall semantic structure. Furthermore, we design a set of interactive visualization techniques for the created word clouds to facilitate visual text analysis and comparison. Case studies are conducted to demonstrate the effectiveness and usefulness of our techniques.  相似文献   

5.
Material interface reconstruction (MIR) is the task of constructing boundary interfaces between regions of homogeneous material, while satisfying volume constraints, over a structured or unstructured spatial domain. In this paper, we present a discrete approach to MIR based upon optimizing the labeling of fractional volume elements within a discretization of the problem's original domain. We detail how to construct and initially label a discretization, and introduce a volume conservative swap move for optimization. Furthermore, we discuss methods for extracting and visualizing material interfaces from the discretization. Our technique has significant advantages over previous methods: we produce interfaces between multiple materials that are continuous across cell boundaries for time‐varying and static data in arbitrary dimension with bounded error.  相似文献   

6.
Visualizing Summary Statistics and Uncertainty   总被引:1,自引:0,他引:1  
  相似文献   

7.
We introduce a multifield comparison measure for scalar fields that helps in studying relations between them. The comparison measure is insensitive to noise in the scalar fields and to noise in their gradients. Further, it can be computed robustly and efficiently. Results from the visual analysis of various data sets from climate science and combustion applications demonstrate the effective use of the measure.  相似文献   

8.
We present a design technique for colors with the purpose of lowering the energy consumption of the display device. Our approach is based on a screen space variant energy model. The result of our design is a set of distinguishable iso-lightness colors guided by perceptual principles. We present two variations of our approach. One is based on a set of discrete user-named (categorical) colors, which are analyzed according to their energy consumption. The second is based on the constrained continuous optimization of color energy in the perceptually uniform CIELAB color space. We quantitatively compare our two approaches with a traditional choice of colors, demonstrating that we typically save approximately 40 percent of the energy. The color sets are applied to examples from the 2D visualization of nominal data and volume rendering of 3D scalar fields.  相似文献   

9.
Reconstructing boundaries along material interfaces from volume fractions is a difficult problem, especially because the under‐resolved nature of the input data allows for many correct interpretations. Worse, algorithms widely accepted as appropriate for simulation are inappropriate for visualization. In this paper, we describe a new algorithm that is specifically intended for reconstructing material interfaces for visualization and analysis requirements. The algorithm performs well with respect to memory footprint and execution time, has desirable properties in various accuracy metrics, and also produces smooth surfaces with few artifacts, even when faced with more than two materials per cell.  相似文献   

10.
The derivation, manipulation and verification of analytical models from raw data is a process which requires a transformation of information across different levels of abstraction. We introduce a concept for the coupling of data classification and interactive visualization in order to make this transformation visible and steerable for the human user. Data classification techniques generate mappings that formally group data items into categories. Interactive visualization includes the user into an iterative refinement process. The user identifies and selects interesting patterns to define these categories. The following step is the transformation of a visible pattern into the formal definition of a classifier. In the last step the classifier is transformed back into a pattern that is blended with the original data in the same visual display. Our approach allows in intuitive assessment of a formal classifier and its model, the detection of outliers and the handling of noisy data using visual pattern‐matching. We instantiated the concept using decision trees for classification and KVMaps as the visualization technique. The generation of a classifier from visual patterns and its verification is transformed from a cognitive to a mostly pre‐cognitive task.  相似文献   

11.
Prostate cancer is one of the most prevalent cancers among males, and the use of magnetic resonance imaging (MRI) has been suggested for its detection. A framework is presented for scoring and visualizing various MR data in an efficient and intuitive manner. A classification method is introduced where a cumulative score volume is created which takes into account each of three acquisition types. This score volume is integrated into a volume rendering framework which allows the user to view the prostate gland, the multi‐modal score values, and the surrounding anatomy. A visibility persistence mode is introduced to automatically avoid full occlusion of a selected score and indicate overlaps. The use of GPU‐accelerated multi‐modal single‐pass ray casting provides an interactive experience. User driven importance rendering allows the user to gain insight into the data and can assist in localization of the disease and treatment planning. We evaluate our results against pathology and radiologists'determinations.  相似文献   

12.
Inappropriate lighting is often responsible for poor quality video. In most offices and homes, lighting is not designed for video conferencing. This can result in unevenly lit faces, distracting shadows, and unnatural colors. We present a method for relighting faces that reduces the effects of uneven lighting and color. Our setup consists of a compact lighting rig and a camera that is both inexpensive and inconspicuous to the user. We use unperceivable infrared (IR) lights to obtain an illumination bases of the scene. Our algorithm computes an optimally weighted combination of IR bases to minimize lighting inconsistencies in foreground areas and reduce the effects of colored monitor light. However, IR relighting alone results in images with an unnatural ghostly appearance, thus a retargeting technique is presented which removes the unnatural IR effects and produces videos that have substantially more balanced intensity and color than the original video.  相似文献   

13.
Large datasets of 3D objects require an intuitive way to browse and quickly explore shapes from the collection. We present a dynamic map of shapes where similar shapes are placed next to each other. Similarity between 3D models exists in a high dimensional space which cannot be accurately expressed in a two dimensional map. We solve this discrepancy by providing a local map with pan capabilities and a user interface that resembles an online experience of navigating through geographical maps. As the user navigates through the map, new shapes appear which correspond to the specific navigation tendencies and interests of the user, while maintaining a continuous browsing experience. In contrast with state of the art methods which typically reduce the search space by selecting constraints or employing relevance feedback, our method enables exploration of large sets without constraining the search space, allowing the user greater creativity and serendipity. A user study evaluation showed a strong preference of users for our method over a standard relevance feedback method.  相似文献   

14.
Creating long motion sequences is a time‐consuming task even when motion capture equipment or motion editing tools are used. In this paper, we propose a system for creating a long motion sequence by combining elementary motion clips. The user is asked to first input motions on a timeline. The system then automatically generates a continuous and natural motion. Our system employs four motion synthesis methods: motion transition, motion connection, motion adaptation, and motion composition. Based on the constraints between the feet of the animated character and the ground, and the timing of the input motions, the appropriate method is determined for each pair of overlapped or sequential motions. As the user changes the arrangement of the motion clips, the system interactively changes the output motion. Alternatively, the user can make the system execute an input motion as soon as possible so that it follows the previous motion smoothly. Using our system, users can make use of existing motion clips. Because the entire process is automatic, even novices can easily use our system. A prototype system demonstrates the effectiveness of our approach.  相似文献   

15.
We present an unbiased method for generating caustic lighting using importance sampled Path Tracing with Caustic Forecasting. Our technique is part of a straightforward rendering scheme which extends the Illumination by Weak Singularities method to allow for fully unbiased global illumination with rapid convergence. A photon shooting preprocess, similar to that used in Photon Mapping, generates photons that interact with specular geometry. These photons are then clustered, effectively dividing the scene into regions which will contribute similar amounts of caustic lighting to the image. Finally, the photons are stored into spatial data structures associated with each cluster, and the clusters themselves are organized into a spatial data structure for fast searching. During rendering we use clusters to decide the caustic energy importance of a region, and use the local photons to aid in importance sampling, effectively reducing the number of samples required to capture caustic lighting.  相似文献   

16.
This paper presents three controlled perceptual studies investigating the visualization of the cerebral aneurysm anatomy with embedded flow visualization. We evaluate and compare the common semitransparent visualization technique with a ghosted view and a ghosted view with depth enhancement technique. We analyze the techniques’ ability to facilitate and support the shape and spatial representation of the aneurysm models as well as evaluating the smart visibility characteristics. The techniques are evaluated with respect to the participants accuracy, response time and their personal preferences. We used as stimuli 3D aneurysm models of five clinical datasets. There was overwhelming preference for the two ghosted view techniques over the semitransparent technique. Since smart visibility techniques are rarely evaluated, this paper may serve as orientation for further studies.  相似文献   

17.
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch‐sensitive displays, our approach allows individuals to custom‐design glyphs (arrows, lines, etc.) that best reveal patterns of the underlying dataset. Interactive exploration of vector fields is facilitated through freedom of glyph placement, glyph density control, and animation. The custom glyphs can be applied individually to probe specific areas of the data but can also be applied in groups to explore larger regions of a vector field. Re‐positionable sources from which glyphs—animated according to the local vector field—continue to emerge are used to examine the vector field dynamically. The combination of these techniques results in an engaging visualization with which the user can rapidly explore and analyze varying types of 2D vector fields, using a virtually infinite number of custom‐designed glyphs.  相似文献   

18.
This paper presents a digital storytelling approach that generates automatic animations for time‐varying data visualization. Our approach simulates the composition and transition of storytelling techniques and synthesizes animations to describe various event features. Specifically, we analyze information related to a given event and abstract it as an event graph, which represents data features as nodes and event relationships as links. This graph embeds a tree‐like hierarchical structure which encodes data features at different scales. Next, narrative structures are built by exploring starting nodes and suitable search strategies in this graph. Different stages of narrative structures are considered in our automatic rendering parameter decision process to generate animations as digital stories. We integrate this animation generation approach into an interactive exploration process of time‐varying data, so that more comprehensive information can be provided in a timely fashion. We demonstrate with a storm surge application that our approach allows semantic visualization of time‐varying data and easy animation generation for users without special knowledge about the underlying visualization techniques.  相似文献   

19.
In this paper, we present a rapid prototyping framework for GPU‐based volume rendering. Therefore, we propose a dynamic shader pipeline based on the SuperShader concept and illustrate the design decisions. Also, important requirements for the development of our system are presented. In our approach, we break down the rendering shader into areas containing code for different computations, which are defined as freely combinable, modularized shader blocks. Hence, high‐level changes of the rendering configuration result in the implicit modification of the underlying shader pipeline. Furthermore, the prototyping system allows inserting custom shader code between shader blocks of the pipeline at run‐time. A suitable user interface is available within the prototyping environment to allow intuitive modification of the shader pipeline. Thus, appropriate solutions for visualization problems can be interactively developed. We demonstrate the usage and the usefulness of our framework with implementations of dynamic rendering effects for medical applications.  相似文献   

20.
For surgical planning, the exploration of 3D visualizations and 2D slice views is essential. However, the generation of visualizations which support the specific treatment decisions is very tedious. Therefore, the reuse of once designed visualizations for similar cases can strongly accelerate the process of surgical planning. We present a new technique that enables the easy reuse of both medical visualization types: 3D scenes and 2D slice views. We introduce the keystates as a concept to describe the state of a visualization in a general manner. They can be easily applied to new datasets to create similar visualizations. Keystates can be shared between surgeons of one specialization to reproduce and document the planning process for collaborative work. Furthermore, animations can support the surgeon on individual exploration and are also useful in collaborative environments, where complex issues must be presented in a short time. Therefore, we provide a framework, where animations can be visually designed by surgeons during their exploration process without any programming or authoring skills. We discuss several transitions between different visualizations and present an application from clinical routine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号