首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
双向复合振动辅助磁力研磨加工的试验研究   总被引:2,自引:2,他引:0  
孙岩  兰勇  杨海吉  陈燕 《表面技术》2018,47(7):125-131
目的进一步提高研磨加工效率,并获得更好的工件表面质量。方法提出双向复合振动(磁极垂直于加工表面的法向超声振动和平行于加工表面的切向振动相结合)辅助磁力研磨法实现对工件表面的研磨抛光。以钛合金工件为研究对象,进行了四种不同工况的研磨加工试验,并对试验结果进行了对比和分析。结果采用双向复合振动辅助磁力研磨法研磨钛合金工件,研磨加工60 min后,工件表面粗糙度值Ra由研磨前的3.78μm降至0.36μm,有效去除了原始加工纹理,获得了较好的表面形貌。工件表面的残余应力由拉应力转化为压应力。结论双向复合振动辅助磁力研磨法既能增加磁性磨粒的瞬时研磨压力,提高研磨加工效率,又能促进磁性磨粒的翻滚与更替,随时改变磁性磨粒的切削刃和切削方向,使磁性磨粒的运动轨迹互相交织,去除工件表面材料更均匀,同时还能有效地改善工件表面的应力状态。  相似文献   

2.
磁性研磨是一种利用磁场中的磁性磨料对具有相对运动的工件表面进行光整加工的新技术。本文对磁性磨粒的加工机理进行了分析,对奥氏体不锈钢精密薄壁零件表面进行了磁性研磨工艺试验。通过试验找出了磁性原料:铝镍钴(AlNiCo);磁性磨料粒度:60^#-70^#;在工件转速、磁感应强度、研磨时间等工艺参数为定值时,加工的奥氏体不锈钢精密薄壁零件的表面粗糙度达到了Ra0.1μm的要求。  相似文献   

3.
目的 针对904L高性能不锈钢工件进行磁力光整加工试验研究,分析加工间隙对不锈钢表面完整性的影响.方法 对不同加工间隙的磁感应强度进行了仿真与测试的对比分析,在不同加工间隙下,采用雾化法制备的新型CBN/铁基球形磁性磨料对904L高性能不锈钢进行磁力研磨加工.利用手持粗糙度仪和精密电子天平对不同间隙下工件表面粗糙度和材料去除量进行测量与分析,利用金相显微镜观察不同加工间隙下工件表面形貌不同变化情况,利用应力测试仪检测不同间隙下工件表面残余应力变化情况,利用润湿角测量仪对不同间隙下工件表面的亲疏水性效果进行观察与分析.结果 当加工间隙为2.5 mm时,CBN/铁基球形磁性磨料磁力光整加工904L不锈钢效果最好.工件表面粗糙度由研磨前的0.5μm下降至0.05μm,5 min内材料去除量可达36 mg,工件表面均匀,划痕被完全去除,同时没有凹坑的产生.工件表面的残余压应力由127.8 MPa增加到318 MPa,工件表面与液滴的润湿角由20°增加至83°,疏水效果达到最好.结论 加工间隙对CBN磁性磨料磁力光整加工904L不锈钢表面完整性有很大影响,当加工间隙为2.5 mm时,工件表面粗糙度最低,表面形貌光整均匀,残余压应力变大,工件的疲劳强度增强,工件表面疏水性变好,达到最佳研磨效果.  相似文献   

4.
磁性磨料研磨是一种较新的光整加工的方法,它是在S、N两极之间加入磁性磨料,磁性磨料吸附在磁极和工件表面上,并沿磁力线方向排列成有一定柔性的“磨料刷”,工件一边旋转,一边做轴向振动,以达到去除表层金属的目的,使工件表面粗糙度大大下降。本文介绍了磁性磨料研磨的加工原理,对工件在磁场中的受力情况进行理论分析。对淬硬工具钢(T8A)工件内圆表面进行磁性磨料研磨的加工试验.得出了不同的磁感应强度,不同加工间隙,以及不同研磨时间对加工表面粗糙度和研磨量的影响;从而得出了优化的磁性磨料研磨的加工参数:磁感应强度B=1.0—1.2T;加工间隙△=1-3mm;研磨时间t=4—5min。  相似文献   

5.
吕旖旎  陈燕  赵杨  巫昌海  康璐 《表面技术》2020,49(9):364-369
目的 为解决氧化锆陶瓷研磨困难这一问题,制备一种新型磁性磨粒。方法 采用粘接法制备金刚石/铁磁性磨粒,探究制备工艺中不同成分配比对其研磨性能的影响。通过扫描电子显微镜对磁性磨粒进行表面形貌分析,结合氧化锆陶瓷板件的研磨试验,采用表面粗糙度测量仪与3D超景深显微镜对研磨前后的工件表面质量作对比分析,以此来评价磁性磨粒的研磨性能,最终确定较优的磁性磨粒制备工艺参数。结果 压制力为0.3 MPa,混料与粘合剂质量比为10∶1,粘合剂中6101环氧树脂、有机硅树脂与651固化剂质量比为4∶1∶5时,磁性磨粒的切削刃数、粘合剂自身的粘接强度及耐热性都达到最佳。使用此磁性磨粒研磨40 min后,氧化锆陶瓷板件的表面粗糙度(Ra)由原始的1.493 μm降至0.116 μm,有效去除了原始表面缺陷和加工纹理,改善了表面质量。结论 在粘合剂中加入有机硅树脂可解决研磨相在铁基体上把持力不足的问题,采用此粘接法所制备的金刚石/铁磁性磨粒能够顺利完成对超硬氧化锆陶瓷材料的加工,金刚石/铁磁性磨粒可以作为性能优良的磨削介质参与研磨,并能够满足磁粒研磨光整加工的要求。  相似文献   

6.
陈晓明  徐成宇  季冬锋  刘宁  朱永伟 《表面技术》2023,(12):112-118+159
目的 获得更低粗糙度的TC4钛合金零件表面。方法 采用黏结法制备不同粒径的磁性磨料,依次运用粒径为150~250μm和63~106μm的磁性磨粒以及这两种粒径的混合磨料进行磁力研磨对比实验,分析基于混合粒径的TC4钛合金低粗糙度磁力研磨可行性。基于磁性颗粒动力模型,根据最小能量原理分析了混合粒径磁力链的微结构,并利用体式显微镜对单粒径和混合粒径磁力链进行对比分析。结果 单粒径和混合粒径磁力研磨在12 min时钛合金工件表面粗糙度均约为0.11μm,此时单一粒径趋于平衡,而混合粒径磁力研磨的表面粗糙度继续下降,在16 min左右达到最低,为0.084μm,比单一粒径降低了20%,工件表面初始划痕和凹坑得到了更好的去除,加工后表面纹理更为致密。大粒径磁力链颗粒能量最小,约为-3.6×10-13J,其次是混合粒径磁力链结构,颗粒能量约为-2.1×10-13J,而小粒径磁力链结构颗粒能量约为-0.45×10-13J,是大粒径和混合粒径磁力链的5~9倍,这说明小粒径颗粒不易形成单独磁力链。结论 混合粒径磁力链中,小粒径颗粒不易形成...  相似文献   

7.
徐会  康仁科  刘冬冬  陈燕 《表面技术》2020,49(1):336-342
目的 解决航空发动机大尺寸涡轮轴内表面积碳去除的难题。方法 运用SEM分析涡轮轴内壁积碳的表面形貌特征、成分组成,为积碳去除方法的确定和工艺研究奠定基础。针对涡轮轴的特殊材质和清洗要求,提出磁力研磨技术去除积碳的方法。通过Solidworks和Workbench软件分析研磨区域的磁感应强度和磨粒受力情况,搭建涡轮轴径向添加辅助磁极和数控机床复合的磁力研磨装置,选取平均粒径为185、250、375 μm的磨粒,在工件转速分别为600、800、1000 r/min的条件下进行对比试验。结果 在试验中,当磁性磨料粒径为250 μm,工件转速为800 r/min,外部磁极与工件外壁的加工间隙为5 mm,研磨时间为60 min时,涡轮轴内表面积碳完全去除,表面粗糙度下降幅度大,研磨后表面粗糙度Ra为1.47 μm。结论 采用数控磁力研磨设备,可以有效去除航空发动机大尺寸涡轮轴内表面积碳,去除效率高,去除后涡轮轴内表面粗糙度Ra达到1.47 μm,满足工件使用要求。  相似文献   

8.
为减少渗碳钢轴的导磁性对磁粒研磨加工的影响,将磨料贮存于周围镶嵌多个磁极的圆形容器中,使被工件带走的磁性粒子能够在磁极间循环利用,虽然降低了磁性磨料在单个磁极处的自我更新作用,但是能够防止磁性磨料的流失。开展对20CrMnTi材质的轴类零件的试验,以加工时间、工件转速、磁性磨料和研磨液的质量比、磁性磨粒的粒径为自变量,工件表面粗糙度作为因变量,采用逐步回归分析建立表面粗糙度预测模型,通过试验验证预测结果的准确性。结果表明:预测模型的表面粗糙度的相对误差绝对值能够控制在7%以内,具有较好的预测能力。   相似文献   

9.
采用氧化铝磨料对钛酸钡(BaTiO3)陶瓷基片进行双面研磨加工,分析磨料粒径、研磨压力、研磨盘转速、磨料浓度以及研磨液流量等研磨工艺参数对基片表面粗糙度和材料去除率的影响。采用双面研磨工艺,依次用W14、W7、W5的氧化铝磨料对钛酸钡陶瓷基片(原始粗糙度Ra0.219μm)在研磨压力3.26kPa、研磨盘转速为37r/min、磨料质量浓度为9%、研磨液流量10mL/min的研磨参数下,进行粗研、半精研、精研,取得了表面粗糙度Ra0.076 6μm的研磨片。对研磨片继续用W0.2SiO2抛光可获得表面粗糙度Ra为6nm的超光滑表面。同时,用激光共聚焦显微镜和扫描电镜观察了不同加工阶段的基片表面形貌,并分析了材料去除机理;采用氧化铝磨料的研磨过程中,材料以脆性断裂去除为主;采用SiO2磨料抛光过程中,工件材料以塑性去除为主。  相似文献   

10.
目的 解决现有烧结法制备磁性磨粒工艺中存在的研磨相单一、研磨相材料硬度相对较低,以及对于高硬度难加工材质的研磨效率低、质量差等问题,采用立方氮化硼粉末作为研磨相烧结制备一种新型磁性磨粒。方法 采用烧结法制备铁基立方氮化硼磁性磨粒,探究原料的粒径比、烧结温度对磁性磨粒磨削性能的影响,以TC4钛合金板和Si3N4陶瓷板为试验对象,通过表面粗糙度测量仪和3D超景深显微镜对比加工前后工件的表面质量,采用扫描电镜观察加工后磁性磨粒的表面形貌,以此作为磁性磨粒的研磨性能和使用寿命的评价指标,并采用面扫描能谱分析仪观察磁性磨粒中研磨相的分布情况。结果 采用烧结法,以铁粉为基体,以立方氮化硼粉末为研磨相材料,制备磁性磨粒。最终确定压制力为90 kN,基体与研磨相的粒径比为3∶1,烧结温度为1 180 ℃,在此条件下制备的磁性磨粒具有良好的磨削性能,相较于烧结法制备的Al2O3/Fe、SiC/Fe磁性磨粒具有更强的磨削性能,可实现Si3N4陶瓷板表面的光整加工,在研磨39 min后可将其表面粗糙度由1.382 μm降至0.117 μm。结论 采用烧结法制备的铁基立方氮化硼磁性磨粒能够解决硬脆材料的表面质量问题,可以作为性能优异的磨削介质参与研磨,满足磁粒研磨光整加工技术的需求。  相似文献   

11.
针对国内在磁力研磨加工机理领域上研究的不足,论文在磁力研磨加工原理的基础上,利用建立磁场图的方法,对磁力研磨加工中磁性磨料所受的磁场力进行了理论上的分析和推导,结果表明磁场对磁性磨料的作用力大小与磁性磨料的粒度、磁性磨料的磁化率、加工区域的磁场强度、磁通集中情况以及磁场梯度有着重大的关系。  相似文献   

12.
华瑛 《物理测试》2011,(Z1):192-196
通过对软磁合金在直流与交流磁化条件下的磁性能参数的测量、分析、比较,研讨了高磁导率合金的直流与交流磁特性之间的差异,找到了影响铁芯磁性能的原因。对如何提高软磁合金产品质量作了一些具有应用价值的探讨,以供软磁材料的研制、开发及应用时作参考。  相似文献   

13.
在磁路结构相同的情况下,计算了体积、形状相同,但性能不同的NdFeB永磁材料所对应的气隙相同的磁路的场强分布,并比较了它们的场强大小,分析了影响场强的因素。表明在设计磁制冷永磁磁化场时,不必一味追求高磁能积材料,要综合考虑永磁材料的磁能积、矫顽力、剩磁等性能,从而为室温磁制冷机中磁化场的建立提供选材依据。  相似文献   

14.
汽车前灯装置用的磁性材料为了减少汽车夜间行驶的交通事故,一个重要的办法就是提高驾驶员的眼睛的夜间辨认能力,这就要在汽车上安装高亮度前灯(High Intensity Dischrge Lamp,简写为HID灯),这种灯较传统用的卤灯省电且更亮,这样驾驶员就能借助它容易发现路面障碍物.HID灯是水银灯、金属卤化物灯、高压钠灯的统称.其中金属卤化物灯用作汽车前灯有2个缺点:①从点灯至达到规定亮度需数分至数十分钟;②一旦灯灭,再点着也必需数分至数十分钟.为克服这两点缺点在其点灯电路中必须设置变换器和触发器.  相似文献   

15.
近年来作为电机小型化、高效率化和降低损耗的手段 ,对所用软磁材料硅钢板采取了提高硅含量来提高其电阻率从而减少涡流损失、降低结晶 (磁 )各向异性和磁致伸缩。但是 ,铁中固溶硅的增高就会导致材料变硬和脆化。以致难以进行轧制和切割等机械加工 ,所以通常以Si 5% (质量 )的硅含量定为工业轧制的极限。然而 ,粉末冶金法为含Si更高的硅钢片材料的开发提供了广阔的发展前景。因此 ,日本大同工业大学和大同特殊钢公司的研究者们 ,以Fe Si系平衡相图为参考研究了利用粉末冶金法制造高Si浓度的硅钢制造极限。用高频感应炉熔炼后 ,高…  相似文献   

16.
随着计算机工业、信息、多媒体技术的高速发展,对计算机外存储设备提出了大容量、高数据传输速率及小型化的要求,而实现该要求的唯一途径是提高记录密度。近几年来,由于高矫顽力低噪声介质、薄膜磁阻头、读写及定位技术等方面的重大突破,使记录密度以每年60%的速率递增。本文就这种数字式磁记录技术中使用的薄膜磁记录介质及新型薄膜磁头材料的发展作一简述。  相似文献   

17.
提出了旋转磁场磁性磨粒光整加工新工艺,进行了旋转磁场磁性磨粒光整加工内孔时磁路的结构设计,建立了数学模型,进行了磁路的数值模拟,确定了磁极合理的布置形式,以球形磁性磨粒为加工介质进行了实验研究,得到了磁极布置形式和回转速度对加工效果的影响曲线.研究表明磁场发生装置能够产生足够大的磁场强度实现内孔表面的光整加工,且磁极成90°布置时,光整加工效果最好.磁极的回转速度也影响加工效果,速度越高,加工效果越好.  相似文献   

18.
19.
金属磁记忆检测技术是一种可早期准确判断构件的应力集中位置和评估疲劳损伤程度的无损检测技术新方法,而磁记忆信号的存在离不开环境磁场。为探讨环境磁场对磁记忆信号的具体影响,在不同环境磁场下,对45钢进行静载拉伸试验,测量在相同环境磁场下不同应力作用下的磁记忆信号。试验结果表明:环境磁场不能改变磁记忆信号曲线的形状,但可以改变磁记忆信号值的大小;在一定的磁场范围内,磁记忆信号值随环境磁场的增加而增加,但当环境磁场超过某一临界值时,磁记忆信号值反而随环境磁场的增加而减少;若环境磁场为零或完全被抵消,应力则不能产生磁记忆信号。故在磁记忆检测实践中,特别是在定量检测应用中必须考虑环境磁场的影响。  相似文献   

20.
根据磁性液体在外加磁场条件下特殊的形状变化,利用自制的磁性液体制作了系列展示磁场空间分布的装置。该系列装置可以生动地三维展示磁场的空间分布,激发学生学习相关科学文化知识的热情。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号